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The forcing number, denoted by f (G), of a graph G with a perfect matching is the
minimum number of independent edges that completely determine the perfect matching
of G. In this paper, we consider the forcing number of a toroidal polyhex H(p, q, t)
with a torsion t , a cubic graph embedded on torus with every face being a hexagon.
We obtain that f (H(p, q, t)) � min{p, q}, and equality holds for p � q or p > q and
t ∈ {0, p − q, p − q + 1, . . . , p − 1}. In general, we show that f (H(p, q, t)) is equal to
the side length of a maximum triangle on H(p, q, t). Based on this result, we design a
linear algorithm to compute the forcing number of H(p, q, t).
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1. Introduction

The concept of forcing number of benzenoids was first proposed by
Harary et al. [4]. The same idea appeared in earlier papers by Randić and
Klein [15] and Klein and Randić [5] in terms of “innate degree of freedom” of
a Kekulé structure. The benzenoids with forcing number 1 was investigated in
[21–24]. The forcing number of Buckminsterfullerene (C60) have been given by
Vukičević et al. [18].

In this paper we gives a fast computation for the forcing number of a toroi-
dal polyhex, or toroidal fullerene, a cubic bipartite graph on torus such that
every face is a hexagon [9], which can be denoted by H(p, q, t) for a string
(p, q, t) of three integers (p � 1, q � 1, 0 � t � p − 1). In 1997, the “Crop cir-
cles fullerenes” discovered by Liu et al. [13] has been presumably torus-shaped.
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Enumeration of ismoers [10], Kekulé structure count [6], spanning tree count [8],
and chirality [11] of toroidal ployhexes have been investigated.

Our approach relys on a general research on the forcing number of a bipar-
tite graph with a perfect matching (or Kekulé structure in chemistry). Let G be
a graph with a perfect matching M . A set S ⊂ M is called a forcing set of M if
S is not contained in any other perfect matchings of G. The forcing number of
M , denoted by f (G, M), is the minimum size of forcing sets of M . The forcing
number of G, denoted by f (G), is the minimum value of the forcing numbers of
all perfect matchings of G.

Recently, the forcing numbers of bipartite graphs [1, 2], in particular, for
square grids [14], stop signs [12], torus, and hypercube [1, 7, 16], have been con-
sidered. Riddle [16] gave a lower bound of the forcing number of bipartite
graphs. Adams et al. [1] proved it is NP-complete to find the smallest forcing set
of a bipartite graph with maximum degree 3. Most recently, the global forcing
number and anti-forcing number of benzenoids were introduced by Došlić [3],
Vukičević and Sedlar [19], and Vukičević and Trinajstić [20], respectively.

By improving Riddle’s method which produces a lower bound of the forcing
number of bipartite graphs we determine the forcing numbers of toroidal polyh-
exes H(p, q, t). For the degenerated cases: H(1, q, 0), H(p, 1, 0), and H(p, 1, p−
1), their forcing numbers equal one. From now on we suppose that toroidal
polyhexes in question always means the non-degenerated cases. We prove that
f (H(p, q, t)) � min{p, q}, and equality holds for p � q or p > q and t ∈
{0, p − q, p − q + 1, . . . , p − 1}. Generally, we prove that f (H(p, q, t)) is equal
to the side length of a maximum triangle on H(p, q, t). Finally, we design a fast
algorithm of O(n) times to compute the forcing number of H(p, q, t), where n
is the number of vertices of H(p, q, t).

2. Preliminaries for toroidal polyhex

A toroidal polyhex H(p, q, t) can be defined as: Let P be a p × q parallel-
ogram section cut from the hexagonal lattice such that every corner lies on the
center of a hexagon, two lateral sides pass through q oblique edges, top and bot-
tom sides pass through p vertical edges; Identify two lateral sides of P to form
a cylinder, and then identify top and bottom sides with a torsion t hexagons
(see figure 1). The toroidal polyhex H(p, q, t) is a bipartite graph since the ver-
tices admit a proper 2-coloring: the vertices incident with a downward vertical
edge and two upwardly lateral edges are colored by white, and the other vertices
black.

We put H(p, q, t) in an affine coordinate system X OY : take the bottom
side as x-axis and a lateral side as y-axis such that x-axis and y-axis form an
angle with 60◦, the origin O is their intersection and P lies on non-negative
region (see figure 1). We take the distance between a pair of parallel edges in
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Figure 1. Toroidal polyhex H(8, 4, 2), I -column (I3 and I5) and I I -column (I I2).

a hexagon as unit length. Each hexagon is labeled by the coordinates (x, y) of
its center, and denoted by (x, y) or hx,y , where x ∈ Zp := {0, 1, . . . , p − 1} and
y ∈ Zq := {0, 1, . . . , q − 1}. In a hexagon hx,y , label the ends of the upper one
in the two edges vertical to y-axis by bx,y and wx,y with respecting to the vertex
colors (see figure 1). Under this labeling, each w0,y is adjacent to b0,y and wx,0
is adjacent to bx+t+1,q−1 (y ∈ Zq , x ∈ Zp). The yth layer is defined to be the
even cycle w0,yb1,yw1,yb2,y . . . wp−1,yb0,yw0,y (y ∈ Zq ).

An automorphism φ of a graph is a bijection from the vertex set to itself
which satisfies both φ and the inverse φ−1 preserve the adjacency between verti-
ces. A graph is vertex-transitive if there exists an automorphism between any two
vertices. Let φrl(vx,y) = vx−1,y and φtb(vx,y) = vx,y−1 where v ∈ V (H(p, q, t)),
x − 1, x ∈ Zp and y − 1, y ∈ Zq , then φrl and φtb are two automorphisms of
H(p, q, t) (see [17]).

The path wx,0bx+1,0wx,1bx+1,1 . . . wx,q−1bx+1,q−1 is called Ix -column (0 �
x � p − 1), simply denoted by Ix , and the vertices wx,0 and bx+1,q−1 are called
the head and the tail of Ix , respectively. The Ix2 is called the successor of Ix1

if the tail of Ix1 is adjacent to the head of Ix2 , and thereby wx2,0 is adjacent
to bx1+1,q−1, further x2 ≡ x1 − t (mod p) (see figure 1, I3 is the successor of
I5). Let Ix1, Ix2, . . . , Ixg be g different I -columns such that Ixi+1 is the succes-
sor of Ixi for i, i + 1 ∈ Zg, then these g I -columns form a cycle, called I -cycle.
According to the automorphism φrl , every I -column lies in an I -cycle and every
I -cycle contains the same number of I -columns. The direction of a I -cycle is
called I +-direction if it is from head to tail along every I -column of this cycle,
and the another direction is called I −-direction.

The path wx,0bx,0 wx−1,1bx−1,1 . . . wx−q+1,q−1bx−q+1,q−1 is called I Ix -col-
umn (0 � x � p − 1). Similarly, we can define the head, tail, successor of
a I I -column and I I -cycle, I I +-direction, I I −-direction as these defined for a



460 H. Wang et al. / Toroidal polyhexes

I -column. If I Ix2 is the successor of I Ix1 , then wx2,0 is adjacent to bx1−q+1,q−1,
further x2 ≡ x1 − (q + t) (mod p).

Lemma 2.1. If a I -cycle (resp. I I -cycle) of H(p, q, t) has g I -columns (I I -col-
umns), then:

(a) H(p, q, t) has p
g I -direction cycles where g is the smallest positive

integer satisfying gt ≡ 0(mod p) and any consecutive p
g I -columns:

Ix , . . . , Ix+ p
g −1 lie on distinct I -cycles.

(b) H(p, q, t) has p
g I I -direction cycles where g is the smallest positive inte-

ger satisfying g(q + t) ≡ 0(mod p) and any consecutive p
g I I -columns:

I Ix , . . . , I Ix+ p
g −1 lie on distinct I I -cycles.

Proof. (a) According to the automorphism φrl , it suffices to consider the
I -cycle consisting of I0, Ip−t , . . . , Ip−(g−1)t . By the definition of I -cycle, the head
of I0 is adjacent to the tail of Ip−(g−1)t , then w0,0bp−(g−1)t+1,q−1 ∈ E(H(p,

q, t)), then p − gt = 0 and p −r t �= 0 for r < g. Hence, g is the smallest positive
integer satisfying gt ≡ 0 (mod p). If t = 0, then g = 1. Hence, H(p, q, t) has p
I -cycles and the assertion holds. So suppose t �= 0, then g � 2. Since H(p, q, t)
has p I -columns and every I -column lies on one I -cycle, every I -cycle contains
p
g I -columns.

In the following, we will prove any two I -columns from I0, I1, . . . , I p
g −1 do

not lie on the same I -direction cycle. Suppose to the contrary that I0 and Ik with
0 < k <

p
g lies on the same I -cycle by the automorphism φrl . Then p − r t ≡ k

(mod p) with 0 < r � g − 1 and further r t ≡ k (mod p). Therefore, there exists
µ ∈ Z

+ such that µp − r t = k, further 1 � µp − r t � p
g − 1. Hence 2 � g �

µpg − r tg � p − g. According gt ≡ 0 (mod p), there exists λ ∈ Z
+ such that

λp = gt . Then 2 � g � (µg − λr)p � p − g, which contradicts µ, λ, g, r ∈ Z
+.

Therefore, I0, . . . , I p
g −1 lie on the distinct I -cycles.

(b) It suffices to consider the I I -cycle consisting of I I0, I Ip−q−t , . . . , I
I(g−1)(p−q−t). By the definition of I I -cycle, then wg(p−q−t),0 = w0,0 and
wr(p−q−t),0 �= w0,0 for r < g. So g is the smallest positive integer satisfying
g(p − q − t) ≡ 0 (mod p). If p − q − t ≡ 0 (mod p), then g = 1. Hence,
H(p, q, t) has p I I -cycles and the assertion holds. So suppose p − q − t �= 0
(mod p), then g � 2. Since H(p, q, t) has p I I -columns and every I I -column
lies on one I I -cycle, then I I -direction cycle contains p

g I I -columns.
In the following, we will prove any two I I -columns from I I0, I I1, . . . , I I p

g −1

do not lie on the same I I -cycle. Suppose to the contrary that I I0 and I Ik with
0 < k <

p
g lies on the same I I -cycle by the automorphism φrl . Then p − r

(p − q − t) ≡ k (mod p) with 0 < r � g − 1, further r(p − q − t) ≡ k (mod
p). Therefore, there exists µ ∈ Z

+ such that r(p − q − t) = k + µp, further



H. Wang et al. / Toroidal polyhexes 461

1 � r(p − q − t) − µp � p
g − 1. On the other hand, since g(p − q − t) ≡ 0

(mod p), there exists λ ∈ Z
+ such that g(p − q − t) = λp. Hence 2 � g �

r(p − q − t)g − µpg = rλp − µpg = (rλ − µg)p � p − g which contradicts
λ, µ, r, g ∈ Z

+. Therefore, I I0,. . . ,I I p
g −1 lie on the distinct I I -cycles. �

3. The forcing number for bipartite graphs

In this section, we consider only bipartite graphs with a perfect matching.
For convenience, a bipartite graph G has bipartition (W, B), W is the vertex set
colored white and B black. Let M be the set of all perfect matchings of G. A
vertex u ∈ V (G) is a neighbor of v ∈ V (G) if u is adjacent to v. All neighbors
of v form its neighborhood, denoted by N (v), and define N [v] = N (v) ∪ {v}.
More generally for T ⊂ V (G), the neighborhood of T is defined as N (T ) :=
(∪v∈T N (v))\T and N [T ] = N (T ) ∪ T .

Define functions α and β on E(G): for any edge e = wb ∈ E(G) with w ∈
W and b ∈ B, α(e) = w and β(e) = b. Given an M ∈ M, S ⊂ M and u ∈
V (G)\V (S), we say S forces u if |N (u)\V (S)| = 1. In particular, S W -forces (resp.
B-forces) an edge e if α(e) (resp. β(e)) is forced by S. If there exists a sequence
of edges e1, e2, . . . , ek and a sequence of edge sets S = S0, S1, S2, . . . , Sk such
that Si = Si−1 ∪ {ei } and Si−1 W -forces (resp. B-forces) ei (i = 1, 2, . . . , k), then
we say S W -forces (resp. B-forces) the set Sk .

Lemma 3.1. [16]. S W -forces M if and only if S forces M . �

Let |M | = n. Assign an ordering to the edges in M : en > en−1 > · · · > e1. Let
bn > bn−1 > · · · > b1 be the corresponding ordering of the vertices in B, where
bi = β(ei ) (1 � i � n). For a vertex b ∈ B, b leads N (w) if b is the largest vertex
among all neighbors of w ∈ W in the ordering of B; b is called a leading vertex
if such a w ∈ W exists, and trailing vertex otherwise. Let Si = {e1, e2, . . . , ei } and
Bi := β(Si ) = {b1, b2, . . . , bi }. Put B̄i := {bn, . . . , bi+1}.
Lemma 3.2. [16]. If Si W -forces ei+1, then bi+1 leads N (wi+1) where wi+1 =
α(ei+1). �

For T ⊂ V (G), the excess of T is defined as ε(T ) = |N (T )|− |T |. The maximum
excess of an ordering bn > bn−1 > · · · > b1 of B is the maximum value in all
ε(B̄i ) (1 � i � n−1). The excess of bi is defined to be ε(bi ) = ε(B̄i−1)−ε(B̄i ). We
call bi an m-excess vertex, simply m-ex , if ε(bi ) = m. Riddle gave the following
lower bound for f (G):

Lemma 3.3. [16]. f (G) is bounded below by the smallest possible maximum
excess for all orderings of B. �
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According to the definition of leading vertex and trailing vertex, we have the
following lemma:

Lemma 3.4. Let bn > bn−1 > · · · > bi > · · · > b1 be an ordering of B. Then:

(a) the following statements are equivalent:
1. bi is a leading vertex; 2. |N (B̄i−1)|−|N (B̄i )| � 1; 3. ε(B̄i−1) � ε(B̄i );
4. ε(bi ) � 0.

(b) the following statements are equivalent:
1. bi is a trailing vertex; 2. |N (B̄i−1)| = |N (B̄i )|; 3. ε(B̄i−1) = ε(B̄i )−1;
4. ε(bi ) = −1.

�

Definition 3.5. An ordering bn > bn−1 > · · · > b1 of B is canonical if its
smallest leading vertex is larger than the largest trailing vertex; non-canonical,
otherwise. �

By lemma 3.4, we have:

Lemma 3.6. The maximum excess of a canonical ordering of B is equal to the
number of trailing vertices. �

Lemma 3.7. Let M be a perfect matching of G. If S is a minimum forcing set
of M , then there exists a canonical ordering of B such that β(S) is the set of
trailing vertices and B\β(S) is the set of leading vertices.

Proof. Let |M | = n and S = {e1, e2, . . . , ek} ⊆ M , the minimum forcing set of
M . By Lemma 3.1, we have S W -forces M . Let S0 = S. Then there exists edge
ek+ j ∈ M for any j ∈ {1, . . . , n − k} and edge set S j = S j−1 ∪ {ek+ j } such that
S j−1 W -forces ek+ j ( j = 1, 2, . . . , n − k) and Sn−k = M . Since β(ek+ j ) = bk+ j
(1 � j � n − k) and lemma 3.2, bk+ j (1 � j � n − k) is a leading vertex of the
ordering of B: bn > bn−1 > · · · > bk+1 > bk > · · · > b1. Then B\β(S) is the set
of leading vertices.

In the following, we want to show that bi ∈ β(S) (1 � i � k) is a trailing
vertex. If not, suppose bi is a leading vertex, then bi leads a set N (w j ). If j > k,
then bi � b j > bk since bi leads N (w j ) and w j b j = e j ∈ M . Therefore, i > k,
a contradiction. So j � k. Since N (w j )\{b j } ⊆ β(S\{e j }), then S\{e j }W -forces e j
and further W -forces M . Hence |S\{e j }| < |S| which contradicts the minimality
of |S|. Hence β(S) is the set of trailing vertices.

Obviously, the ordering bn > bn−1 > · · · > bk+1 > bk > · · · > b1 is
canonical. �
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For any perfect matching M of G, lemma 3.7 implies there exists a canon-
ical ordering of B with f (G, M) trailing vertices.

Theorem 3.8. f (G) is bounded below by the minimum trailing vertex number
over all canonical orderings of B. �

Let bn > bn−1 > · · · > b1 be an ordering of B and T ⊆ B, T̄ = B\T .
A vertex b ∈ T̄ is called forced vertex of N [T ] (also forced vertex of T ) if
N (b) ⊂ N [T ] or |N (b) ∩ (W\N [T ])| = 1. An edge e ∈ E(G) is B-forced by N [T ]
(also B-forced by T ) if β(e) ∈ T̄ , α(e) ∈ W\N [T ] and N (β(e)) ∩ (W\N [T ]) =
{α(e)}. If there exists a sequence of edges e1, e2, . . . , ek and a sequence of ver-
tex sets T0(= T ), T1, T2, . . . , Tk such that Ti = Ti−1 ∪ β(ei ) and Ti−1 B-forces
ei (i = 1, 2, . . . , k), then we say the edge set {e1, e2, . . . , ek} is B-forced by T . Let
S be the maximum B-forced edge set of T and V ′, the set of all forced vertices of
N [T ]∪α(S)∪β(S). Then N [T ]∪α(S)∪β(S)∪V

′
is called the forced domain of T ,

denoted by D(T ). The forced domain of bi is defined to be D(bi ) = D(N [B̄i−1]).
A vertex bi is called key vertex of the ordering if D(bi+1) � D(bi ).

Lemma 3.9. Let bn > bn−1 > · · · > b1 be a canonical ordering of B and b j1 >

b j2 > · · · > b jl , all key vertices of B. Then the maximum excess of the ordering
is no less than

∑l
i=1 ε(b ji ).

Proof. Let b ji be any key vertex of the ordering of B. Then D(b ji +1) � D(b ji ).
If ε(b ji ) � 0, then |N (b ji )\N (B̄ ji )| � 1. Hence N [b ji ] ⊂ D(N [B̄ ji ]) and
D(b ji +1) = D(N [B̄ ji ]) = D(N [B̄ ji ] ∪ N [b ji ]) = D(N [B̄ ji −1]) = D(b ji ), a con-
tradiction. So ε(b ji ) � 1.

Since bn > bn−1 > · · · > b1 is a canonical ordering of B, let bk+1 be the
smallest leading vertex and then jl � k+1. By lemma 3.4, ε(bi ) � 0 for i � k+1.
Hence ε(B̄k) is the maximum excess of the ordering and satisfies

ε(B̄k) =
∑

i>k

ε(bi ) =
l∑

i=1

ε(b ji ) +
∑

i>k,i �= j1,..., jl

ε(bi ) �
l∑

i=1

ε(b ji ).

�

4. The forcing number for toroidal polyhexes

Let T ⊂ B. We say T is full in yth layer (or I -column) L if V (L) ⊂
T ∪ N (T ) and T touches L if V (L) ∩ N [T ] �= ∅ and V (L) � N [T ]. For
any toroidal polyhex H(p, q, t), it has at least three perfect matchings: M1 =
{e|e is vertical in H(p, q, t)}, M2 = {bi, jwi, j |i ∈ Zp, j ∈ Zq}, and M3 =
{wi, j bi+1, j |i ∈ Zp, j ∈ Zq}. Hence f (H(p, q, t)) � 1.
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Theorem 4.1. Let H(p, q, t) be a toroidal polyhex. Then f (H(p, q, t)) � min{p, q}.

Proof. If min{p, q} = 1, the assertion holds. So, in the following, we suppose
min{p, q} � 2.

Let bpq > bpq−1 > · · · > b1 be any ordering of B. Then it suffices to prove
there exists i ∈ {1, . . . , pq} satisfying ε(B̄i ) � min{p, q} by lemma 3.3. For any
ordering of B, let j be the largest one in {1, . . . , pq} such that B̄ j is full in either
a yth layer or a I -column. Then we have following cases:

Case 1: If B̄ j is full in a yth layer but not full in any I -column. Hence B̄ j
touches every I -column Ik (0 � k � p−1). Then |N (B̄ j ∩V (Ik))|−|B̄ j ∩V (Ik)| �
1. Therefore,

ε(B̄ j ) = |N (B̄ j )| − |B̄ j | =
p−1∑

k=0

(|N (B̄ j ∩ V (Ik))| − |B̄ j ∩ V (Ik)|) � p

since (B̄ j ∩ V (Ii )) ∩ (B̄ j ∩ V (Ir )) = ∅ for i �= r .
Case 2: If B̄ j is full in a I -column but not full in any yth layer. Hence B̄ j

touches every layer Lk (0 � k � q −1). Then |N (B̄ j ∩V (Lk))|−|B̄ j ∩V (Lk)| � 1.
Therefore,

ε(B̄ j ) = |N (B̄ j )| − |B̄ j | =
q−1∑

k=0

(|N (B̄ j ∩ V (Lk))| − |B̄ j ∩ V (Lk)|) � q

since (B̄ j ∩ V (Li )) ∩ (B̄ j ∩ V (Lr )) = ∅ for i �= r .
Case 3: If B̄ j is full in a I -column and a yth layer simultaneously. Then

B̄ j+1 touches every I -column and every yth layer. According to cases 1 and 2,
ε(B̄ j+1) � max{p, q}.

Combining cases 1–3, we have f (H(p, q, t)) � ε(B̄i ) � min{p, q} for some
i ∈ {1, . . . , pq} and complete the proof. �

Theorem 4.1 gives a lower bound for the forcing number of toroidal poly-
hex and it is sharp for infinitely many toroidal polyhexes, implied by the follow-
ing theorem.

Theorem 4.2.

f (H(p, q, t)) =
{

p, if p � q,

q, if p > q and t = 0, p − 1, . . . , p − q.

Proof. If p � q. Since H(1, 1, 0) has only two vertices and three edges, then
f (H(1, 1, 0)) = 1. So suppose 2 � q and let S = {b j,0w j−1,1|0 � j � p − 1}.
Then S forces a perfect matching M1. Hence f (H(p, q, t), M1) � |S| = q for
1 � p � q. By theorem 4.1, we have f (H(p, q, t)) = p.
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Figure 2. Toroidal polyhex H(7, 3, t) and illustration for proof of theorem 4.2.

If p > q. Let S = {b1, jw1, j |0 � j � q − 1}. Clearly, S forces E =
{bi, jwi, j |1 � i � q, j = q − i}. So S forces M2 if and only if S ∪ E forces
edge b2,q−1w2,q−1, equivalently w1−t,0 ∈ N (b2,q−1) ∩ {w1,0, . . . , wq,0} (see figure
2 (left)), just 1 � p + 1 − t � q and further p − q + 1 � t � p. Therefore,
f (H(p, q, t)) � |S| = q for t = 0, p − 1, . . . , p − q + 1. For t = p − q, let
S = {wi, j bi+1, j |0 � i � q − 1, j = q − 1 − i}. Then S forces M3 (see figure 2
(right)). Hence f (H(p, q, t)) � |S| = q for t = p − q. By theorem 4.1, we have
f (H(p, q, t)) = q for p > q and t = 0, p − 1, . . . , p − q. �

Theorem 4.2 gives the forcing numbers of partial toroidal polyhexes. For
the toroidal polyhex H(p, q, t) with p > q � 1 and 1 � t � p − q − 1, it
becomes a little complicated to give its forcing number. Let H denote a toroi-
dal polyhex H(p, q, t) for convenience. For a vertex set S ⊂ V (H), H [S] is the
subgraph induced by S in H .

A triangle T on H is defined to be an equilateral triangle whose corners lie
on the centers of three hexagons hx1,y, hx2,y , and hx3,y′ such that wx1,y and wx3,y′
are on the same I -cycle and wx2−1,y and wx3−1,y′ are on the same I I -cycle, the
side length of T is |x2−x1|, denoted by δ(T ). For convenience, we use a hexagon
notation to denote its center, then T = hx1,yhx2,yhx3,y′ . A triangle T is maximum
on H if δ(T ) is largest among all triangles. The triangle h0,0hk,0hi, j (i = p − st
and j = k − sq with s � 0, i ∈ Zp and j ∈ Zq ) is also called normal triangle,
denoted by �k . By the automorphism φtb and φrl , every triangle is isomorphic
to a normal triangle. According to the representation of H in the plane, �k con-
sists of s trapeziums Pi+1 = h p−i t,0hk−i(q+t),0hk−(i+1)(q+t),0h p−(i+1)t,0 with 0 �
i � s − 1 and a small triangle Ps+1 = h p−st,0hk−s(q+t),0h p−st,k−sq . For example,
the �5 in H(11, 3, 3) consists of a trapezium P1 = h0,0h5,0h10,0h8,0 and a trian-
gle P2 = h8,0h10,0h8,2 (see figure 3). Simply, we also use a triangle to denote the
vertex set consisting of all vertices lying in it, for example, �2 = N [b1,0]. For a
normal triangle �i , define �̄i = V (H) − �i .

Let T be a triangle, I Ix is adjacent to T if V (I Ix ) ∩ T = ∅ and V (I Ix ) ∩
N (T ) �= ∅. A vertex b ∈ V (I Ix ) is I I -adjacent to T if b ∈ N (T ) and V (I Ix )

is adjacent to T (I I5 and I I10 are adjacent to �5 and all black vertices on I I5
are I I -adjacent to �k in figure 3), let NI I (T ) be the vertex set consisting all
I I -adjacent vertices together with their neighbors in all I I -columns adjacent to
T . If a normal triangle �i satisfies |�i ∩ N (b)| � 1 for any b ∈ �̄i , then
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5II 10II

Figure 3. Toroidal polyhex H(11, 3, 3) and the normal triangle �5.

�i+1 = �i ∪ NI I (�i ). The process from �i to �i+1 is called triangle extension.
We continue the triangle extension and stop at �k which satisfies there exists a
vertex b ∈ �̄k such that |N (b) ∩ �k | = 2, the �k is called characteristic triangle
of H .

Lemma 4.3. Let �k be the characteristic triangle of H . Then for any i < k, the
normal triangle �i satisfies D(�i ) = �i .

Proof. For any �i (i < k), |N (v) ∩ �i | � 1 for any vertex b ∈ �̄i since �k
is a characteristic triangle. Hence �i does not B-force v. Immediately, we have
D(�i ) = �i . �

Theorem 4.4. Let �k consist of s trapezia Pi+1 (0 � i � s − 1) and one triangle
Ps+1. Then �k is the characteristic triangle if and only if one of following cases
appears:

(1) there exists l (0 � l � s) such that P1 and Pl+1 have the same corner
hk,0;

(2) there exists l (0 � l � s) such that P1 and Pl+1 have the same corner
h0,0;

(3) the corner h p−st,k−sq of Ps+1 coincides with hx,0 where 0 � x � k.

Proof. Sufficiency: It suffices to prove there exists b ∈ �̄k such that |N (b) ∩
�k | = 2. If (1) holds, let b = bk,0 ∈ �̄k . Since wk−1,0 ∈ P1 and wk,0 ∈ Pl+1,
|N (bk,0)∩�k | = 2. If (2) holds, let b = b0,0 ∈ �̄k . Hence |N (b0,0)∩�k | = 2 since
wp−1,0 ∈ Pl+1, w0,0 ∈ P1. If (3) holds, then let b = bx+t+1,q−1 ∈ �̄k if x < k and
b = bx+t,q−1 ∈ �̄k if x = k. Then the assertion holds since wx,0 ∈ P1, wx+t,q−1 ∈
Ps+1 for x < k and wx−1,0 ∈ P1, wx+t,q−1 ∈ Ps+1 for x = k.

Necessary: Since �k is the characteristic triangle, there exists b ∈ �̄k such
that |N (b) ∩ �k | = 2. Hence b ∈ N (�k). For a vertex b ∈ �k ∩ B, we have
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N (b) ⊂ �k . So b ∈ B ∩ �̄k , say b = bi, j . Then N (bi, j ) = {wi−1, j , wi, j , wx,y}
where x = i − 1, y = j + 1 if j �= q − 1 and x = i − t − 1, y = 0 if j = q − 1.

Case 1: If wi−1, j ∈ Pl1 and wi, j ∈ Pl2 . Then the center hi, j is a point in
the intersection of Pl1 and Pl2 . If j �= 0, then the vertex bi, j−1 /∈ �k−1 satisfies
|N (bi, j−1) ∩ �k−1| = 2 since wi−1, j−1, wi, j−1 ∈ �k−1, then bi, j−1 ∈ D(�k−1)

which contradicts D(�k−1) = �k−1 by lemma 4.3, so j = 0. If min{l1, l2} �=
1, then the vertex bi+t,q−1 /∈ �k−1 satisfies |N (bi+t,q−1) ∩ �k−1| = 2 since
wi+t,q−1, wi+t−1,q−1 ∈ �k−1, then bi+t,q ∈ D(�k−1), a contradiction. Therefore,
we have min{l1, l2} = 1 and j = 0. If l1 = 1, then (1) appears. If l2 = 1, then (2)
appears.

Case 2: If wi−1, j ∈ Pl1 and wx,y ∈ Pl2 or wi, j ∈ Pl1 and wx,y ∈ Pl2 . If
l2 �= 1 or y �= 0, we have wx,ybi, j ∈ E(H [�k]) which contradicts bi, j ∈ �̄k , so
l2 = 1 and y �= 0, just j = q − 1. If Pl1 is a trapezium, then bi−1,q−1 ∈ Pl1 .
Since wx,0 ∈ P1, then 0 � x � k. If x > 0, then wx−1,0, wi−2,q−1 ∈ �k and fur-
ther |N (bi−1,q−1)∩�k−1| = 2, then bi−1,q−1 ∈ D(�k−1) which contradicts lemma
4.3. So x = 0, then Pl1+1 and P1 have the same corner h0,0, (2) appears. If Pl1
is a triangle, then l1 = s + 1, further the corner h p−st,k−sq = hx+t+1,q−1 of Ps+1
coincides with hx,0 (0 � x � k), (3) appears. �

According to the isomorphism φtb and φrl of H , theorem 4.4 and its proof
imply the characteristic triangle is, in fact, a maximum triangle on the toroidal
polyhex and every maximum triangle is also isomorphic to the characteristic tri-
angle.

Lemma 4.5. Let �k be the characteristic triangle of H and every I I -cycle (resp.
I -cycle) of H has g (resp. g′) I I -columns (resp. I -columns). Then k � p

g if one
of cases (1)–(3) with x �= k in theorem 4.4 appears and k � p

g′ if case (3) with
x = k in theorem 4.4 appears.

Proof. Case 1: If P1 and Pl+1 (1 � l � s) have the same corner hk,0. Then
k ≡ p − lt (mod p). Hence there exists λ ∈ Z

+ such that k = λp − lt . Since a
I I -cycle contains g I I -columns, by lemma 2.1 we have g(q+t) ≡ 0 (mod p), fur-
ther g[p−(q+t)] ≡ 0 (mod p). So there exists µ ∈ Z such that g[p−(q+t)] = µp,
further (g − µ)p = g(q + t).

Since k − sq � 1, k � sq + 1 > lq. Hence

g(k − lq) = g[(λp − lt) − lq] = g[λp − l(q + t)] = gλp − g(q + t)l

= [g(λ − l) + µl]p.

Then g(k − lq) � p since g(k − lq) > 0. Therefore, k >
p
g .

Case 2: If P1 and Pl+1 (1 � l � s) have the same corner h0,0. Then
k − l(q + t) ≡ 0 (mod p), further l(p − q − t) + k ≡ 0 (mod p). Let γ ∈ Z satisfy
l(p−q−t)+k = γ p. Then (l−γ )p+k = l(q+t), further g(l−γ )p+gk = gl(q+t).
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Hence gk = (l −γ )gp+lg(q + t). By lemma 2.1, g(q + t) ≡ 0 (mod p). Therefore,
gk ≡ 0 (mod p). Clearly, gk > 0. Hence gk > p, just k >

p
g .

Case 3: If h p−st,k+1−sq = hx,0 for 0 � x � k.
Subcase 3.1: If 0 � x � k − 1. According to h p−st,k−sq = hx,0, we have

k − sq − q = 0 and p − st − t = x . Further, k = (1 + s)q and 0 � p − (1 + s)t < k
(mod p). Then there exists η ∈ Z such that 0 � ηp − (1 + s)t < k.

By lemma 2.1, g(q + t) ≡ 0 (mod p). So there exists θ ∈ Z such that θp =
g(q + t), then gq = θp − gt . Hence

gk = g(1 + s)q = (1 + s)(θp − gt) = (1 + s)θp − (1 + s)gt

and

gk > g[ηp − (1 + s)t] = gηp − (1 + s)gt � 0.

Therefore (1+s)θ > gη, further (1+s)θ � 1+gη. Then gk = (1+s)θp−(1+s)gt �
(1 + gη)p − (1 + s)gt = p + [gηp − (1 + s)gt] � p. So k � p

g .
Subcase 3.2: If x = k, then k ≡ p − (s + 1)t (mod p). Hence there exists

η ∈ Z
+ such that k = ηp − (s + 1)t . Then g′k = ηg′ p − (s + 1)g′t . By lemma

2.1, g′t ≡ 0 (mod p). There exists θ ∈ Z such that g′k = [ηg′ − (s + 1)θ ]p. Since
g′k > 0, hence g′k � p. So k � p

g′ . �

Let G ⊂ H , an edge e ∈ E(G) is called a pendant edge if β(e) is a 1-degree
vertex. Clearly, a pendant edge e is B-forced by V (H − G).

Lemma 4.6. Let �k be the characteristic triangle of toroidal polyhex H . Then
D(�k) = V (H).

Proof. Let �k consist of s trapeziums Pl+1 (0 � l � s − 1) and a triangle Ps+1,
H0 := H [�̄k] is the subgraph of H induced by �̄k (see Figure 4).

Case 1: There exists 0 � l � s such that P1 and Pl+1 have the same corner
hk,0. Let S1 = E(H0) ∩ M1. Then we have the following claim:

'

II - II -II -

1lII - lII

Figure 4. Illustration for case 1 in proof of lemma 4.6.
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Claim 1: S1 is B-forced by �k .

Proof. Clearly, bk,0wk−1,1 is a pendant edge of H0 and is forced by �k . Let e1 =
bk,0wk−1,1 and H1 = H0 − {bk,0, wk−1,1}. Define Si as the vertical pendant edge
set of Hi and Hi+1 := Hi − V (Si ), i = 0, 1, 2, . . .

Suppose to the contrary that there exist edges in S1 not B-forced by �k ,
equivalently, there exists Hm ⊂ H0 such that E(Hm) contains no pendant ver-
tical edge and E(Hm) ∩ S1 �= ∅. Choose one edge e ∈ E(Hm) ∩ S1 such that
e ∈ I Il and l is minimal. By the minimality of l, for any e′ ∈ E(I Il−1), either
e′ ∈ E(H [�k]) or e′ is a pendant edge of some Hi with i < m. Let Rl−1 and
Rl be the I I -cycle containing I Il−1 and I Il , respectively. By lemma 4.5, every
I I -cycle contains at least one edge in E ′ = {w j,0b j+t+1,q−1|0 � j � k−1}. Hence,
all vertical edges in E(Rl−1) starting from e′ along I I −-direction and stoping at
some edge in E ′∩E(Rl−1) are not in E(Hm). Since e is not a pendent edge, there-
fore all vertical edge in E(Rl) starting from e along I I −-direction and stoping at
some edge in E ′ ∩ E(Rl) belong to E(Hm); If not, E(Hm) contains vertical pen-
dant edge which contradicts the supposition. But E ′ ∩ E(H0) = ∅, which contra-
dicts Hm ⊂ H0 and E ′ ∩ E(Rl) ∩ E(Hm) �= ∅. The contradiction implies claim 1.

Since S1 = E(H0)∩M1, then H −(V (S1)∪�k) consists of k isolated vertices:
bt+i,q−1 (1 � i � k). Then N (bt+i,q−1) ⊂ �k ∪ V (S1), so bt+i,q−1 ∈ D(�k) since
S1 is B-forced by �k . Further, D(�k) = V (H).

Case 2: There exists 0 � l � s such that P1 and Pl+1 have the same corner
h0,0. Let S2 = E(H0) ∩ M2. Then we have following claim (see Figure 5):

Claim 2: S2 is B-forced by �k .

Proof. Since Pl = h p−(l−1)t,0hk−(l−1)(q+t),0hk−l(q+t),0h p−lt,0, hence k −l(q + t) ≡ 0
(mod p) and further k − (l − 1)(q + t) − q ≡ t (mod p), which implies the
black vertex bt+i,q−1 (1 � i � k) is adjacent to wi−1,0 belonging to P1. Hence,
bt+1,q−1wt+1,q−1 is a pendant edge of H0 since wt,q−1 ∈ Pl ∩ N (bt+1,q−1) and
w0,0 ∈ P1 ∩ N (bt+1,q−1). Let H1 = H0 − {bt+1,q−1, wt+1,q−1}. Define Si ⊂ S2 is
the pendant edge set of Hi and Hi+1 := Hi − V (Si ), i = 0, 1, . . .

1lII - lII

II +

'

Figure 5. Illustration for case 2 in proof of lemma 4.6.



470 H. Wang et al. / Toroidal polyhexes

1lII - lII

II +

'

Figure 6. Illustration for subcase 3.1 in proof of lemma 4.6.

Suppose to the contrary that there exist edges in S2 not B-forced by �k ,
equivalently, there exists Hm ⊂ H0 such that every edge in E(Hm) ∩ S2 �= ∅ is
not a pendant edge of Hm . Choose one edge e ∈ E(Hm) ∩ S2 such that e ∈ I Il
and l is minimal. By the minimality of l, for any e′ ∈ E(I Il−1) ∩ M2, either
e′ ∈ E(H [�k]) or e′ is a pendant edge of some Hi with i < m. By lemma 4.5,
every I I -cycle contains at least one edge in E ′ = {w j,0b j,0|0 � j � k − 1}.
Hence, all edges in E(Rl−1) ∩ M2 starting from e′ along I I +-direction and stop-
ing at some edge in E ′ ∩ E(Rl−1) are not in E(Hm). Since e is not a pendent
edge, all vertical edge in E(Rl) starting from e along I I +-direction and stop-
ing at some edge in E ′ ∩ E(Rl) belong to E(Hm); If not, E(Hm) contains pen-
dant edge in S2 which contradicts the supposition. But E ′ ∩ E(H0) = ∅, which
contradicts Hm ⊂ H0 and E ′ ∩ E(Rl) ∩ E(Hm) �= ∅. The contradiction implies
claim 2.

Since S2 is B-forced by �k , H0 − V (S2) has no edges, hence for any vertex
in H0 − V (S2), its neighbors belongs to �k ∪ V (S2). Hence D(�k) = V (H).

Case 3: The corner h p−st,k−sq of Ps+1 coincides with hx,0 where 0 � x � k.
Subcase 3.1: If x < k. Then bx+1,q−1wx+1,q−1 is a pendant edge of H0. Let

H1 = H0 − {bx+1,q−1, wx+1,q−1} (see Figure 6).
Further, by the same discussion as that of case 2, we have E(H0) ∩ M2 is

B-forced by �k . Since H0 −V (E(H0)∩ M2) has only k isolated vertices, D(�k) =
V (H).

Subcase 3.2: If x = k. Then bx,q−1wx−1,q−1 is a pendant edge of H0. Let
H1 = H0 − {bx,q−1, wx−1,q−1}.

By the same discussion of subcase 3.1 but changing I I -cycle to I -cycle, we
have D(�k) = V (H). �

Lemma 4.7. Let �k be the characteristic triangle of H . Then f (H) � k.

Proof. It suffices to find a perfect matching M of H such that
f (H, M) � k. Let �k consist of s trapeziums Pl+1 (0 � l � s − 1) and a tri-
angle Ps+1.
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Figure 7. T1 and T2, the double edges are B-forced by T1 ∪ T2.

Case 1: If there exists 0 � l � s such that P1 and Pl+1 have the same corner
hk,0. Let S = {wi,0bi+t+1,q−1|0 � i � k − 1}. Then S forces E(H [�k]) ∩ M1. By
lemma 4.6, in this case, �k forces E(H [�̄k]) ∩ M1. Since M1 = S ∪ (E(H [�k]) ∩
M1) ∪ (E(H [�̄k]) ∩ M1), we have S forces M1. Further, f (H(p, q, t), M1) �
|S| = k.

Case 2: If there exists 0 � l � s such that P1 and Pl+1 have the same corner
h0,0. Let S = {bp−r t,iwp−r t,i | 0 � r � 
 k

q �, 0 � i � q − 1 and r = � k
q �, 0 � i �

k − (r − 1)q − 1}. Then S forces E(H [�k])∩ M2. Since �k forces E(H [�̄k])∩ M2
and M2 = S ∪ (E(H [�k]) ∩ M2) ∪ (E(H [�̄k]) ∩ M2), we have S forces M2 and
then f (H(p, q, t), M2) � |S| = k.

Case 3: The corner h p−st,k−sq of Ps+1 coincides with hx,0 where 0 � x � k.
Subcase 3.1: For 0 � x < k. Let S = {bp−r t,iwp−r t,i | 0 � r � 
 k

q �, 0 � i �
q − 1 and r = � k

q �, 0 � i � k − (r − 1)q − 1}. As discussion in case 2, we have S
forces M2 and then f (H, M2) � |S| = k.

Subcase 3.2: For x = k. Let S = {bk−r(p+t),iwk−r(p+t)−1,i | 0 � r � 
 k
q �, 0 �

i � q − 1 and r = � k
q �, 0 � i � k − (r − 1)q − 1}. Then S forces E(H [�k]) ∩ M3.

Since �k forces E(H [�̄k])∩M3 and M3 = S∪(E(H [�k])∩M3)∪(E(H [�̄k])∩M3),
we have S forces M3 and further f (H, M3) � |S| = k. �

Let triangles T1 and T2 satisfy T1 = N [bx1,y1] and T2 = N [bx2,y2]. If T1 and
T2 have a common point, then D(T1 ∪ T2) is the minimal triangle T such that
T1 ∪ T2 ⊂ T if �k satisfies k > δ(T ) (see figure 7). For generality, let T1 and
T2 be two triangles with δ(Ti ) < k(i = 1, 2). We say T1 and T2 are disjoint
if they have no common point. If T1 and T2 have a common point, let T∗ be
the region of intersection of T1 and T2, then D(T1 ∪ T2) is the minimal trian-
gle containing T1 ∪ T2 if δ(T1) + δ(T2) − δ(T∗) < k and D(T1 ∪ T2) = V (H) if
δ(T1)+ δ(T2)− δ(T∗) � k, where k is the side length of the characteristic triangle
of H . We omit the proof here.
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Lemma 4.8. Let �k be the characteristic triangle of H and bpq > bpq−1 > · · · >

b1 be any canonical ordering of B whose key vertices are b j1 > · · · > b jl . Then
∑l

i=1 ε(b ji ) � k.

Proof. Since H is a 3-regular graph and b ji (1 � i � l) is key vertex, we have
1 � ε(b ji ) � 2. Clearly we have bpq = b j1 , ε(b j1) = 2 and D(b jl ) = V (H). If
l = 1, then D(N [b j1]) = V (H). According to the isomorphism φtb and φrl , let
b j1 = b1,0. Then �2 = N [b j1], so D(�2) = V (H), hence �2 is a characteristic
triangle. Therefore, k = 2 � ε(b j1) and the assertion holds.

So, in the following, we suppose l > 1. Then D(b jl−1) � V (H).
Claim: D(b ji ) (1 � i � l − 1) consists of some disjoint triangles T such that

δ(T ) < k and
∑

b jt ∈T
ε(b jt ) � δ(T ) for 1 � t � i .

Proof. We prove it by induction on i . If i = 1, let b j1 = bx,y . Then D(b j1) =
N [bx,y]. So D(b j1) consists only of one triangle T = N [bx,y] with side length
2. On the other hand, b j1 is the maximum key vertex of the ordering B, so
ε(b j1) = 2 � δ(T ). Hence the claim holds for i = 1.

In the following, we assume claim is true for i −1, then D(b ji−1) consists of
some disjoint triangles T1, . . . , Tr and

∑
b jt ∈Tm

ε(b jt ) � δ(Tm) (1 � t � i − 1, 1 �
m � r ). Let T = {T1, T2, . . . , Tr }. For the key vertex b ji , let T 0 be the triangle
such that T 0 = N [b ji ]. If T 0 has no common points with Tm (1 � m � r ), then
ε(b ji ) = 2 and claim is true since δ(T ) = 2. Without loss of generality, suppose
there exists a sequence of triangles Tm1, . . . , Tmr1

∈ T such that Tm j+1 has a com-
mon point with T j , where T j is the minimal triangle satisfying T j−1∪Tm j ⊆ T j ,
and for every T ′ ∈ T , T ′ has a common point with T r1 if and only if T ′ ⊆ T r1 .
Let T j∗ = T j−1 ∩ Tm j (1 � j � r1). Then δ(T j ) = δ(Tm j ) + δ(T j−1) − δ(T j∗ ) and
δ(T r1) < k, otherwise contradict with i � l − 1. Let Tm = {Tm1, Tm2, . . . , Tmr1

}.
We have

δ(T r1) = δ(T r1−1)+δ(Tmr1
)−δ(T r1∗ )�δ(T r1−1)+δ(Tmr1

)�
r1∑

j=1

δ(Tm j )+δ(T 0)−δ(T 1∗ )

�
r1∑

j=1

∑

b jt ∈Tm j

ε(b jt )+ε(b ji )+
∑

T ′∈T \Tm and T ′⊂T r1

δ(T ′)�
∑

b jt ∈T r1

ε(b jt ).

Therefore, the claim holds.
In the following, we will prove

∑l
i=1 ε(b ji ) � k. Suppose that D(b jl−1) con-

sists of r disjoint triangles T1, . . . , Tr . Let T 0 = N [b jl ]. Since 1 � ε(b jl ) � 2 and
D(b jl ) = V (H), there exists Tm1(1 � m1 � r) such that Tm1 has a common point
with T 0. Then either δ(Tm1) + δ(T 0) − δ(T 1∗ ) � k where T 1∗ = T 0 ∩ Tm1 or there
is a minimal triangle T 1 such that T 0 ∪ Tm1 ⊂ T 1 and δ(T 1) = δ(Tm1) + δ(T 0) −
δ(T 1∗ ) < k.
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If the former holds, we have

k � δ(Tm1) + δ(T 0) − δ(T 1∗ ) �
∑

b ji ∈Tm1

ε(b ji ) + ε(b jl ) �
l∑

i=1

ε(b ji ),

the assertion holds. If the latter holds, without loss of generality, suppose there
exists a sequence of triangles Tm1, Tm2, . . . , Tmr1

(1 � mi � r for i = 1, 2, . . . , r1)

and triangles T 0, T 1, T 2, . . . , T r1 , such that T j has a common point with Tm j+1

and is minimal subject to T j−1 ∪ Tm j ⊆ T j , and every Ti (1 � i � r) has a
common point with T r1 if and only if Ti ⊆ T r1 . Let T j∗ = T j−1 ∩ Tm j . Then
δ(T r1) = δ(T r1−1) + δ(Tmr1

) − δ(T r1∗ ) � k by D(b jl ) = V (H). According to the
claim, we have

k � δ(T r1−1) + δ(Tmr1
) − δ(T r1∗ ) � δ(T r1−1) + δ(Tmr1

)

�
r1∑

j=1

δ(Tm j ) + δ(T 0) − δ(T 1∗ ) �
r1∑

j=1

∑

b ji ∈Tm j

ε(b ji ) + ε(b jl ) �
l∑

i=1

ε(b ji ).

The assertion holds. �

Theorem 4.9. Let �k be the characteristic triangle of H(p, q, t). Then
f (H(p, q, t)) = k.

Proof. By lemmas 3.9 and 4.8, we know the smallest possible maximum excess
over all canonical orderings of B is no less than k. Hence f (H(p, q, t)) �
k by lemma 3.6 and theorem 3.8. By lemma 4.7, f (H(p, q, t)) � k. So
f (H(p, q, t)) = k. �

5. An algorithm

We conclude this paper with a fast algorithm to compute f (H(p, q, t)) with
p > q � 1 and 1 � t � p − q − 1, based on theorem 4.2, which gives the forc-
ing number of a toroidal polyhex H(p, q, t) with 1 � p � q or p > q � 1 and
t ∈ {p − q, p − q + 1, . . . , p − 1, 0}.

According to the triangle extension introduced in section 4 and theorems
4.4 and 4.9, we have the following algorithm of complexity O(n), where n is the
number of vertices of H(p, q, t).

Algorithm 5.1. Input: A toroidal polyhex H(p, q, t) with p > q � 1 and 1 � t �
p − q − 1.

Output: The forcing number of H(p, q, t).
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Step 0. Set a := p−1, b := 1, and k := q +1 (a is the minimal x-coordinate
over all bottom-left vertices of trapeziums except P1, b is the maximal x-coordi-
nate over all the bottom-right vertices of the trapeziums except P1, and k is the
side length of the normal triangle).

Step 1. Set s := 
 k
q � and r := k − sq; If r = 0, set s := s − 1, r := q.

Step 2. If r = q and 0 � p − (s +1)t (mod p) � k, obtain the characteristic
triangle and output k, stop.

Step 3. If r = 1, set a := min{a, p − st (mod p)}, b := max{b + 1, (p − st)
(mod p) + 1}; else, set b := b + 1.

Step 4. If a = k or b = q, obtain the characteristic triangle and output k,
then stop.

Step 5. Set k := k + 1. Then go to step 1. �

A program of algorithm 5.1 in Microsoft Visual FoxPro 6.0 has been
accomplished on micro computer.
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