Journal of Mathematical Chemistry, Vol. 43, No. 2, February 2008 (© 2006) DOI: 10.1007/s10910-006-9208-4

The forcing number of toroidal polyhexes

Hongwei Wang, Dong Ye, and Heping Zhang*

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China E-mail: zhanghp@lzu.edu.cn

Hongwei Wang

Department of Mathematics, Linyi Normal University, Linyi, Shandong 276005, People's Republic of China

Received 28 August 2006; accepted 20 September 2006

The forcing number, denoted by f(G), of a graph G with a perfect matching is the minimum number of independent edges that completely determine the perfect matching of G. In this paper, we consider the forcing number of a toroidal polyhex H(p, q, t) with a torsion t, a cubic graph embedded on torus with every face being a hexagon. We obtain that $f(H(p,q,t)) \ge \min\{p,q\}$, and equality holds for $p \le q$ or p > q and $t \in \{0, p-q, p-q+1, \ldots, p-1\}$. In general, we show that f(H(p,q,t)) is equal to the side length of a maximum triangle on H(p,q,t). Based on this result, we design a linear algorithm to compute the forcing number of H(p,q,t).

KEY WORDS: toroidal polyhex, forcing number, kekulé structure, perfect matching

1. Introduction

The concept of forcing number of benzenoids was first proposed by Harary et al. [4]. The same idea appeared in earlier papers by Randić and Klein [15] and Klein and Randić [5] in terms of "innate degree of freedom" of a Kekulé structure. The benzenoids with forcing number 1 was investigated in [21–24]. The forcing number of Buckminsterfullerene (C_{60}) have been given by Vukičević et al. [18].

In this paper we gives a fast computation for the forcing number of a toroidal polyhex, or toroidal fullerene, a cubic bipartite graph on torus such that every face is a hexagon [9], which can be denoted by H(p, q, t) for a string (p, q, t) of three integers $(p \ge 1, q \ge 1, 0 \le t \le p - 1)$. In 1997, the "Crop circles fullerenes" discovered by Liu et al. [13] has been presumably torus-shaped.

*Corresponding author.

Enumeration of ismoers [10], Kekulé structure count [6], spanning tree count [8], and chirality [11] of toroidal ployhexes have been investigated.

Our approach relys on a general research on the forcing number of a bipartite graph with a perfect matching (or Kekulé structure in chemistry). Let G be a graph with a perfect matching M. A set $S \subset M$ is called a *forcing set* of M if S is not contained in any other perfect matchings of G. The *forcing number* of M, denoted by f(G, M), is the minimum size of forcing sets of M. The *forcing number* of G, denoted by f(G), is the minimum value of the forcing numbers of all perfect matchings of G.

Recently, the forcing numbers of bipartite graphs [1, 2], in particular, for square grids [14], stop signs [12], torus, and hypercube [1, 7, 16], have been considered. Riddle [16] gave a lower bound of the forcing number of bipartite graphs. Adams et al. [1] proved it is NP-complete to find the smallest forcing set of a bipartite graph with maximum degree 3. Most recently, the global forcing number and anti-forcing number of benzenoids were introduced by Došlić [3], Vukičević and Sedlar [19], and Vukičević and Trinajstić [20], respectively.

By improving Riddle's method which produces a lower bound of the forcing number of bipartite graphs we determine the forcing numbers of toroidal polyhexes H(p,q,t). For the degenerated cases: H(1,q,0), H(p,1,0), and H(p,1,p-1), their forcing numbers equal one. From now on we suppose that toroidal polyhexes in question always means the non-degenerated cases. We prove that $f(H(p,q,t)) \ge \min\{p,q\}$, and equality holds for $p \le q$ or p > q and $t \in \{0, p-q, p-q+1, \ldots, p-1\}$. Generally, we prove that f(H(p,q,t)) is equal to the side length of a maximum triangle on H(p,q,t). Finally, we design a fast algorithm of O(n) times to compute the forcing number of H(p,q,t), where n is the number of vertices of H(p,q,t).

2. Preliminaries for toroidal polyhex

A toroidal polyhex H(p, q, t) can be defined as: Let P be a $p \times q$ parallelogram section cut from the hexagonal lattice such that every corner lies on the center of a hexagon, two lateral sides pass through q oblique edges, top and bottom sides pass through p vertical edges; Identify two lateral sides of P to form a cylinder, and then identify top and bottom sides with a torsion t hexagons (see figure 1). The toroidal polyhex H(p, q, t) is a bipartite graph since the vertices admit a proper 2-coloring: the vertices incident with a downward vertical edge and two upwardly lateral edges are colored by white, and the other vertices black.

We put H(p, q, t) in an affine coordinate system XOY: take the bottom side as x-axis and a lateral side as y-axis such that x-axis and y-axis form an angle with 60°, the origin O is their intersection and P lies on non-negative region (see figure 1). We take the distance between a pair of parallel edges in

Figure 1. Toroidal polyhex H(8, 4, 2), *I*-column (I_3 and I_5) and *II*-column (II_2).

a hexagon as unit length. Each hexagon is labeled by the coordinates (x, y) of its center, and denoted by (x, y) or $h_{x,y}$, where $x \in \mathbb{Z}_p := \{0, 1, \dots, p-1\}$ and $y \in \mathbb{Z}_q := \{0, 1, \dots, q-1\}$. In a hexagon $h_{x,y}$, label the ends of the upper one in the two edges vertical to y-axis by $b_{x,y}$ and $w_{x,y}$ with respecting to the vertex colors (see figure 1). Under this labeling, each $w_{0,y}$ is adjacent to $b_{0,y}$ and $w_{x,0}$ is adjacent to $b_{x+t+1,q-1}$ ($y \in \mathbb{Z}_q, x \in \mathbb{Z}_p$). The yth layer is defined to be the even cycle $w_{0,y}b_{1,y}w_{1,y}b_{2,y}\dots w_{p-1,y}b_{0,y}w_{0,y}$ ($y \in \mathbb{Z}_q$).

An automorphism ϕ of a graph is a bijection from the vertex set to itself which satisfies both ϕ and the inverse ϕ^{-1} preserve the adjacency between vertices. A graph is *vertex-transitive* if there exists an automorphism between any two vertices. Let $\phi_{rl}(v_{x,y}) = v_{x-1,y}$ and $\phi_{tb}(v_{x,y}) = v_{x,y-1}$ where $v \in V(H(p, q, t))$, $x - 1, x \in \mathbb{Z}_p$ and $y - 1, y \in \mathbb{Z}_q$, then ϕ_{rl} and ϕ_{tb} are two automorphisms of H(p, q, t) (see [17]).

The path $w_{x,0}b_{x+1,0}w_{x,1}b_{x+1,1}\dots w_{x,q-1}b_{x+1,q-1}$ is called I_x -column ($0 \le x \le p-1$), simply denoted by I_x , and the vertices $w_{x,0}$ and $b_{x+1,q-1}$ are called the *head* and the *tail* of I_x , respectively. The I_{x_2} is called the *successor* of I_{x_1} if the tail of I_{x_1} is adjacent to the head of I_{x_2} , and thereby $w_{x_2,0}$ is adjacent to $b_{x_1+1,q-1}$, further $x_2 \equiv x_1 - t \pmod{p}$ (see figure 1, I_3 is the successor of I_5). Let $I_{x_1}, I_{x_2}, \dots, I_{x_g}$ be g different I-columns such that $I_{x_{i+1}}$ is the successor of I_{x_i} for $i, i+1 \in \mathbb{Z}_g$, then these g I-column lies in an I-cycle and every I-cycle contains the same number of I-columns. The direction of a I-cycle is called I^+ -direction if it is from head to tail along every I-column of this cycle, and the another direction is called I^- -direction.

The path $w_{x,0}b_{x,0}$ $w_{x-1,1}b_{x-1,1} \dots w_{x-q+1,q-1}b_{x-q+1,q-1}$ is called II_x -column ($0 \le x \le p-1$). Similarly, we can define the *head*, *tail*, *successor* of a *II*-column and *II*-cycle, II^+ -direction, II^- -direction as these defined for a *I*-column. If II_{x_2} is the successor of II_{x_1} , then $w_{x_2,0}$ is adjacent to $b_{x_1-q+1,q-1}$, further $x_2 \equiv x_1 - (q+t) \pmod{p}$.

Lemma 2.1. If a *I*-cycle (resp. *II*-cycle) of H(p, q, t) has g *I*-columns (*II*-columns), then:

- (a) H(p,q,t) has $\frac{p}{g}$ *I*-direction cycles where *g* is the smallest positive integer satisfying $gt \equiv 0 \pmod{p}$ and any consecutive $\frac{p}{g}I$ -columns: $I_x, \ldots, I_{x+\frac{p}{g}-1}$ lie on distinct *I*-cycles.
- (b) H(p, q, t) has $\frac{p}{g}$ *II*-direction cycles where g is the smallest positive integer satisfying $g(q + t) \equiv 0 \pmod{p}$ and any consecutive $\frac{p}{g}II$ -columns: $II_x, \ldots, II_{x+\frac{p}{g}-1}$ lie on distinct *II*-cycles.

Proof. (a) According to the automorphism ϕ_{rl} , it suffices to consider the *I*-cycle consisting of $I_0, I_{p-t}, \ldots, I_{p-(g-1)t}$. By the definition of *I*-cycle, the head of I_0 is adjacent to the tail of $I_{p-(g-1)t}$, then $w_{0,0}b_{p-(g-1)t+1,q-1} \in E(H(p, q, t))$, then p-gt = 0 and $p-rt \neq 0$ for r < g. Hence, g is the smallest positive integer satisfying $gt \equiv 0 \pmod{p}$. If t = 0, then g = 1. Hence, H(p, q, t) has p *I*-cycles and the assertion holds. So suppose $t \neq 0$, then $g \ge 2$. Since H(p, q, t) has p *I*-columns and every *I*-column lies on one *I*-cycle, every *I*-cycle contains $\frac{p}{g}$ *I*-columns.

In the following, we will prove any two *I*-columns from $I_0, I_1, \ldots, I_{\frac{p}{g}-1}$ do not lie on the same *I*-direction cycle. Suppose to the contrary that I_0 and I_k with $0 < k < \frac{p}{g}$ lies on the same *I*-cycle by the automorphism ϕ_{rl} . Then $p - rt \equiv k$ (mod p) with $0 < r \leq g - 1$ and further $rt \equiv k \pmod{p}$. Therefore, there exists $\mu \in \mathbb{Z}^+$ such that $\mu p - rt = k$, further $1 \leq \mu p - rt \leq \frac{p}{g} - 1$. Hence $2 \leq g \leq \mu pg - rtg \leq p - g$. According $gt \equiv 0 \pmod{p}$, there exists $\lambda \in \mathbb{Z}^+$ such that $\lambda p = gt$. Then $2 \leq g \leq (\mu g - \lambda r)p \leq p - g$, which contradicts $\mu, \lambda, g, r \in \mathbb{Z}^+$. Therefore, $I_0, \ldots, I_{\frac{p}{2}-1}$ lie on the distinct *I*-cycles.

(b) It suffices to consider the *II*-cycle consisting of $II_0, II_{p-q-t}, \ldots, I$ $I_{(g-1)(p-q-t)}$. By the definition of *II*-cycle, then $w_{g(p-q-t),0} = w_{0,0}$ and $w_{r(p-q-t),0} \neq w_{0,0}$ for r < g. So g is the smallest positive integer satisfying $g(p-q-t) \equiv 0 \pmod{p}$. If $p-q-t \equiv 0 \pmod{p}$, then g = 1. Hence, H(p,q,t) has p *II*-cycles and the assertion holds. So suppose $p-q-t \neq 0 \pmod{p}$, then $g \ge 2$. Since H(p,q,t) has p *II*-columns and every *II*-column lies on one *II*-cycle, then *II*-direction cycle contains $\frac{p}{g}II$ -columns.

In the following, we will prove any two *II*-columns from $II_0, II_1, \ldots, II_{\frac{p}{s}-1}$ do not lie on the same *II*-cycle. Suppose to the contrary that II_0 and II_k with $0 < k < \frac{p}{g}$ lies on the same *II*-cycle by the automorphism ϕ_{rl} . Then p - r $(p - q - t)^{\frac{p}{g}} \equiv k \pmod{p}$ with $0 < r \leq g - 1$, further $r(p - q - t) \equiv k \pmod{p}$. Therefore, there exists $\mu \in \mathbb{Z}^+$ such that $r(p - q - t) = k + \mu p$, further $1 \leq r(p-q-t) - \mu p \leq \frac{p}{g} - 1$. On the other hand, since $g(p-q-t) \equiv 0$ (mod p), there exists $\lambda \in \mathbb{Z}^+$ such that $g(p-q-t) = \lambda p$. Hence $2 \leq g \leq r(p-q-t)g - \mu pg = r\lambda p - \mu pg = (r\lambda - \mu g)p \leq p - g$ which contradicts $\lambda, \mu, r, g \in \mathbb{Z}^+$. Therefore, $II_0, \ldots, II_{\frac{p}{q}-1}$ lie on the distinct II-cycles.

3. The forcing number for bipartite graphs

In this section, we consider only bipartite graphs with a perfect matching. For convenience, a bipartite graph G has bipartition (W, B), W is the vertex set colored white and B black. Let \mathcal{M} be the set of all perfect matchings of G. A vertex $u \in V(G)$ is a *neighbor* of $v \in V(G)$ if u is adjacent to v. All neighbors of v form its *neighborhood*, denoted by N(v), and define $N[v] = N(v) \cup \{v\}$. More generally for $T \subset V(G)$, the neighborhood of T is defined as N(T) := $(\bigcup_{v \in T} N(v)) T$ and $N[T] = N(T) \cup T$.

Define functions α and β on E(G): for any edge $e = wb \in E(G)$ with $w \in W$ and $b \in B$, $\alpha(e) = w$ and $\beta(e) = b$. Given an $M \in \mathcal{M}$, $S \subset M$ and $u \in V(G) \setminus V(S)$, we say *S* forces *u* if $|N(u) \setminus V(S)| = 1$. In particular, *S W*-forces (resp. *B*-forces) an edge *e* if $\alpha(e)$ (resp. $\beta(e)$) is forced by *S*. If there exists a sequence of edges e_1, e_2, \ldots, e_k and a sequence of edge sets $S = S_0, S_1, S_2, \ldots, S_k$ such that $S_i = S_{i-1} \cup \{e_i\}$ and S_{i-1} *W*-forces (resp. *B*-forces) e_i ($i = 1, 2, \ldots, k$), then we say *S W*-forces (resp. *B*-forces) the set S_k .

Lemma 3.1. [16]. S W-forces M if and only if S forces M.

Let |M| = n. Assign an ordering to the edges in M: $e_n > e_{n-1} > \cdots > e_1$. Let $b_n > b_{n-1} > \cdots > b_1$ be the corresponding ordering of the vertices in B, where $b_i = \beta(e_i)$ $(1 \le i \le n)$. For a vertex $b \in B$, b leads N(w) if b is the largest vertex among all neighbors of $w \in W$ in the ordering of B; b is called a *leading vertex* if such a $w \in W$ exists, and *trailing vertex* otherwise. Let $S_i = \{e_1, e_2, \ldots, e_i\}$ and $B_i := \beta(S_i) = \{b_1, b_2, \ldots, b_i\}$. Put $\overline{B_i} := \{b_n, \ldots, b_{i+1}\}$.

Lemma 3.2. [16]. If S_i W-forces e_{i+1} , then b_{i+1} leads $N(w_{i+1})$ where $w_{i+1} = \alpha(e_{i+1})$.

For $T \subset V(G)$, the excess of T is defined as $\epsilon(T) = |N(T)| - |T|$. The maximum excess of an ordering $b_n > b_{n-1} > \cdots > b_1$ of B is the maximum value in all $\epsilon(\bar{B}_i)$ $(1 \leq i \leq n-1)$. The excess of b_i is defined to be $\epsilon(b_i) = \epsilon(\bar{B}_{i-1}) - \epsilon(\bar{B}_i)$. We call b_i an *m*-excess vertex, simply *m*-ex, if $\epsilon(b_i) = m$. Riddle gave the following lower bound for f(G):

Lemma 3.3. [16]. f(G) is bounded below by the smallest possible maximum excess for all orderings of *B*.

$$\square$$

According to the definition of leading vertex and trailing vertex, we have the following lemma:

Lemma 3.4. Let $b_n > b_{n-1} > \cdots > b_i > \cdots > b_1$ be an ordering of *B*. Then:

- (a) the following statements are equivalent: 1. b_i is a leading vertex; 2. $|N(\bar{B}_{i-1})| - |N(\bar{B}_i)| \ge 1$; 3. $\epsilon(\bar{B}_{i-1}) \ge \epsilon(\bar{B}_i)$; 4. $\epsilon(b_i) \ge 0$.
- (b) the following statements are equivalent: 1. b_i is a trailing vertex; 2. $|N(\bar{B}_{i-1})| = |N(\bar{B}_i)|$; 3. $\epsilon(\bar{B}_{i-1}) = \epsilon(\bar{B}_i) - 1$; 4. $\epsilon(b_i) = -1$.

Definition 3.5. An ordering $b_n > b_{n-1} > \cdots > b_1$ of *B* is *canonical* if its smallest leading vertex is larger than the largest trailing vertex; *non-canonical*, otherwise.

By lemma 3.4, we have:

Lemma 3.6. The maximum excess of a canonical ordering of *B* is equal to the number of trailing vertices. \Box

Lemma 3.7. Let *M* be a perfect matching of *G*. If *S* is a minimum forcing set of *M*, then there exists a canonical ordering of *B* such that $\beta(S)$ is the set of trailing vertices and $B \setminus \beta(S)$ is the set of leading vertices.

Proof. Let |M| = n and $S = \{e_1, e_2, \ldots, e_k\} \subseteq M$, the minimum forcing set of M. By Lemma 3.1, we have S W-forces M. Let $S_0 = S$. Then there exists edge $e_{k+j} \in M$ for any $j \in \{1, \ldots, n-k\}$ and edge set $S_j = S_{j-1} \cup \{e_{k+j}\}$ such that S_{j-1} W-forces e_{k+j} $(j = 1, 2, \ldots, n-k)$ and $S_{n-k} = M$. Since $\beta(e_{k+j}) = b_{k+j}$ $(1 \leq j \leq n-k)$ and lemma 3.2, b_{k+j} $(1 \leq j \leq n-k)$ is a leading vertex of the ordering of B: $b_n > b_{n-1} > \cdots > b_{k+1} > b_k > \cdots > b_1$. Then $B \setminus \beta(S)$ is the set of leading vertices.

In the following, we want to show that $b_i \in \beta(S)$ $(1 \le i \le k)$ is a trailing vertex. If not, suppose b_i is a leading vertex, then b_i leads a set $N(w_j)$. If j > k, then $b_i \ge b_j > b_k$ since b_i leads $N(w_j)$ and $w_jb_j = e_j \in M$. Therefore, i > k, a contradiction. So $j \le k$. Since $N(w_j) \setminus \{b_j\} \subseteq \beta(S \setminus \{e_j\})$, then $S \setminus \{e_j\} W$ -forces e_j and further W-forces M. Hence $|S \setminus \{e_j\}| < |S|$ which contradicts the minimality of |S|. Hence $\beta(S)$ is the set of trailing vertices.

Obviously, the ordering $b_n > b_{n-1} > \cdots > b_{k+1} > b_k > \cdots > b_1$ is canonical.

For any perfect matching M of G, lemma 3.7 implies there exists a canonical ordering of B with f(G, M) trailing vertices.

Theorem 3.8. f(G) is bounded below by the minimum trailing vertex number over all canonical orderings of *B*.

Let $b_n > b_{n-1} > \cdots > b_1$ be an ordering of *B* and $T \subseteq B$, $\overline{T} = B \setminus T$. A vertex $b \in \overline{T}$ is called *forced vertex* of N[T] (also *forced vertex* of *T*) if $N(b) \subset N[T]$ or $|N(b) \cap (W \setminus N[T])| = 1$. An edge $e \in E(G)$ is *B*-forced by N[T] (also *B*-forced by *T*) if $\beta(e) \in \overline{T}$, $\alpha(e) \in W \setminus N[T]$ and $N(\beta(e)) \cap (W \setminus N[T]) = \{\alpha(e)\}$. If there exists a sequence of edges e_1, e_2, \ldots, e_k and a sequence of vertex sets $T_0(=T), T_1, T_2, \ldots, T_k$ such that $T_i = T_{i-1} \cup \beta(e_i)$ and T_{i-1} *B*-forces e_i $(i = 1, 2, \ldots, k)$, then we say the edge set $\{e_1, e_2, \ldots, e_k\}$ is *B*-forced by *T*. Let *S* be the maximum *B*-forced edge set of *T* and *V'*, the set of all forced vertices of $N[T] \cup \alpha(S) \cup \beta(S)$. Then $N[T] \cup \alpha(S) \cup \beta(S) \cup V'$ is called the *forced domain* of *T*, denoted by D(T). The forced domain of b_i is defined to be $D(b_i) = D(N[\overline{B}_{i-1}])$. A vertex b_i is called *key vertex* of the ordering if $D(b_{i+1}) \subseteq D(b_i)$.

Lemma 3.9. Let $b_n > b_{n-1} > \cdots > b_1$ be a canonical ordering of *B* and $b_{j_1} > b_{j_2} > \cdots > b_{j_i}$, all key vertices of *B*. Then the maximum excess of the ordering is no less than $\sum_{i=1}^{l} \epsilon(b_{j_i})$.

Proof. Let b_{j_i} be any key vertex of the ordering of B. Then $D(b_{j_i+1}) \subseteq D(b_{j_i})$. If $\epsilon(b_{j_i}) \leq 0$, then $|N(b_{j_i}) \setminus N(\bar{B}_{j_i})| \leq 1$. Hence $N[b_{j_i}] \subset D(N[\bar{B}_{j_i}])$ and $D(b_{j_i+1}) = D(N[\bar{B}_{j_i}]) = D(N[\bar{B}_{j_i}] \cup N[b_{j_i}]) = D(N[\bar{B}_{j_i-1}]) = D(b_{j_i})$, a contradiction. So $\epsilon(b_{j_i}) \geq 1$.

Since $b_n > b_{n-1} > \cdots > b_1$ is a canonical ordering of B, let b_{k+1} be the smallest leading vertex and then $j_l \ge k+1$. By lemma 3.4, $\epsilon(b_i) \ge 0$ for $i \ge k+1$. Hence $\epsilon(\bar{B}_k)$ is the maximum excess of the ordering and satisfies

$$\epsilon(\bar{B}_k) = \sum_{i>k} \epsilon(b_i) = \sum_{i=1}^l \epsilon(b_{j_i}) + \sum_{i>k, i \neq j_1, \dots, j_l} \epsilon(b_i) \ge \sum_{i=1}^l \epsilon(b_{j_i}).$$

4. The forcing number for toroidal polyhexes

Let $T \subset B$. We say T is *full* in yth layer (or *I*-column) L if $V(L) \subset T \cup N(T)$ and T touches L if $V(L) \cap N[T] \neq \emptyset$ and $V(L) \notin N[T]$. For any toroidal polyhex H(p,q,t), it has at least three perfect matchings: $M_1 = \{e|e \text{ is vertical in } H(p,q,t)\}, M_2 = \{b_{i,j}w_{i,j}|i \in \mathbb{Z}_p, j \in \mathbb{Z}_q\}$, and $M_3 = \{w_{i,j}b_{i+1,j}|i \in \mathbb{Z}_p, j \in \mathbb{Z}_q\}$. Hence $f(H(p,q,t)) \ge 1$. **Theorem 4.1.** Let H(p, q, t) be a toroidal polyhex. Then $f(H(p, q, t)) \ge \min\{p, q\}$.

Proof. If min $\{p, q\} = 1$, the assertion holds. So, in the following, we suppose min $\{p, q\} \ge 2$.

Let $b_{pq} > b_{pq-1} > \cdots > b_1$ be any ordering of *B*. Then it suffices to prove there exists $i \in \{1, \ldots, pq\}$ satisfying $\epsilon(\bar{B}_i) \ge \min\{p, q\}$ by lemma 3.3. For any ordering of *B*, let *j* be the largest one in $\{1, \ldots, pq\}$ such that \bar{B}_j is full in either a yth layer or a *I*-column. Then we have following cases:

Case 1: If \bar{B}_j is full in a yth layer but not full in any *I*-column. Hence \bar{B}_j touches every *I*-column I_k $(0 \le k \le p-1)$. Then $|N(\bar{B}_j \cap V(I_k))| - |\bar{B}_j \cap V(I_k)| \ge 1$. Therefore,

$$\epsilon(\bar{B}_j) = |N(\bar{B}_j)| - |\bar{B}_j| = \sum_{k=0}^{p-1} (|N(\bar{B}_j \cap V(I_k))| - |\bar{B}_j \cap V(I_k)|) \ge p$$

since $(\bar{B}_j \cap V(I_i)) \cap (\bar{B}_j \cap V(I_r)) = \emptyset$ for $i \neq r$.

Case 2: If \bar{B}_j is full in a *I*-column but not full in any yth layer. Hence \bar{B}_j touches every layer L_k $(0 \le k \le q-1)$. Then $|N(\bar{B}_j \cap V(L_k))| - |\bar{B}_j \cap V(L_k)| \ge 1$. Therefore,

$$\epsilon(\bar{B}_j) = |N(\bar{B}_j)| - |\bar{B}_j| = \sum_{k=0}^{q-1} (|N(\bar{B}_j \cap V(L_k))| - |\bar{B}_j \cap V(L_k)|) \ge q$$

since $(\overline{B}_j \cap V(L_i)) \cap (\overline{B}_j \cap V(L_r)) = \emptyset$ for $i \neq r$.

Case 3: If \bar{B}_j is full in a *I*-column and a yth layer simultaneously. Then \bar{B}_{j+1} touches every *I*-column and every yth layer. According to cases 1 and 2, $\epsilon(\bar{B}_{j+1}) \ge \max\{p, q\}$.

Combining cases 1–3, we have $f(H(p,q,t)) \ge \epsilon(\bar{B}_i) \ge \min\{p,q\}$ for some $i \in \{1, ..., pq\}$ and complete the proof.

Theorem 4.1 gives a lower bound for the forcing number of toroidal polyhex and it is sharp for infinitely many toroidal polyhexes, implied by the following theorem.

Theorem 4.2.

$$f(H(p,q,t)) = \begin{cases} p, & \text{if } p \leq q, \\ q, & \text{if } p > q \text{ and } t = 0, p - 1, \dots, p - q. \end{cases}$$

Proof. If $p \leq q$. Since H(1, 1, 0) has only two vertices and three edges, then f(H(1, 1, 0)) = 1. So suppose $2 \leq q$ and let $S = \{b_{j,0}w_{j-1,1}|0 \leq j \leq p-1\}$. Then S forces a perfect matching M_1 . Hence $f(H(p, q, t), M_1) \leq |S| = q$ for $1 \leq p \leq q$. By theorem 4.1, we have f(H(p, q, t)) = p.

Figure 2. Toroidal polyhex H(7, 3, t) and illustration for proof of theorem 4.2.

If p > q. Let $S = \{b_{1,j}w_{1,j}|0 \le j \le q-1\}$. Clearly, S forces $E = \{b_{i,j}w_{i,j}|1 \le i \le q, j = q-i\}$. So S forces M_2 if and only if $S \cup E$ forces edge $b_{2,q-1}w_{2,q-1}$, equivalently $w_{1-t,0} \in N(b_{2,q-1}) \cap \{w_{1,0}, \ldots, w_{q,0}\}$ (see figure 2 (left)), just $1 \le p+1-t \le q$ and further $p-q+1 \le t \le p$. Therefore, $f(H(p,q,t)) \le |S| = q$ for $t = 0, p-1, \ldots, p-q+1$. For t = p-q, let $S = \{w_{i,j}b_{i+1,j}|0 \le i \le q-1, j = q-1-i\}$. Then S forces M_3 (see figure 2 (right)). Hence $f(H(p,q,t)) \le |S| = q$ for $t = 0, p-1, \ldots, p-q$.

Theorem 4.2 gives the forcing numbers of partial toroidal polyhexes. For the toroidal polyhex H(p, q, t) with $p > q \ge 1$ and $1 \le t \le p - q - 1$, it becomes a little complicated to give its forcing number. Let H denote a toroidal polyhex H(p, q, t) for convenience. For a vertex set $S \subset V(H)$, H[S] is the subgraph induced by S in H.

A triangle T on H is defined to be an equilateral triangle whose corners lie on the centers of three hexagons $h_{x_1,y}$, $h_{x_2,y}$, and $h_{x_3,y'}$ such that $w_{x_1,y}$ and $w_{x_3,y'}$ are on the same *I*-cycle and $w_{x_2-1,y}$ and $w_{x_3-1,y'}$ are on the same *II*-cycle, the side length of T is $|x_2-x_1|$, denoted by $\delta(T)$. For convenience, we use a hexagon notation to denote its center, then $T = h_{x_1,y}h_{x_2,y}h_{x_3,y'}$. A triangle T is maximum on H if $\delta(T)$ is largest among all triangles. The triangle $h_{0,0}h_{k,0}h_{i,j}$ (i = p - stand j = k - sq with $s \ge 0, i \in \mathbb{Z}_p$ and $j \in \mathbb{Z}_q$) is also called normal triangle, denoted by Δ_k . By the automorphism ϕ_{tb} and ϕ_{rl} , every triangle is isomorphic to a normal triangle. According to the representation of H in the plane, Δ_k consists of s trapeziums $P_{i+1} = h_{p-it,0}h_{k-i(q+t),0}h_{k-(i+1)(q+t),0}h_{p-(i+1)t,0}$ with $0 \le$ $i \le s - 1$ and a small triangle $P_{s+1} = h_{p-st,0}h_{k-s(q+t),0}h_{p-st,k-sq}$. For example, the Δ_5 in H(11, 3, 3) consists of a trapezium $P_1 = h_{0,0}h_{5,0}h_{10,0}h_{8,0}$ and a triangle $P_2 = h_{8,0}h_{10,0}h_{8,2}$ (see figure 3). Simply, we also use a triangle to denote the vertex set consisting of all vertices lying in it, for example, $\Delta_2 = N[b_{1,0}]$. For a normal triangle Δ_i , define $\overline{\Delta}_i = V(H) - \Delta_i$.

Let T be a triangle, II_x is *adjacent* to T if $V(II_x) \cap T = \emptyset$ and $V(II_x) \cap N(T) \neq \emptyset$. A vertex $b \in V(II_x)$ is *II-adjacent* to T if $b \in N(T)$ and $V(II_x)$ is adjacent to T (II_5 and II_{10} are adjacent to Δ_5 and all black vertices on II_5 are *II*-adjacent to Δ_k in figure 3), let $N_{II}(T)$ be the vertex set consisting all *II*-adjacent vertices together with their neighbors in all *II*-columns adjacent to T. If a normal triangle Δ_i satisfies $|\Delta_i \cap N(b)| \leq 1$ for any $b \in \overline{\Delta_i}$, then

Figure 3. Toroidal polyhex H(11, 3, 3) and the normal triangle \triangle_5 .

 $\Delta_{i+1} = \Delta_i \cup N_{II}(\Delta_i)$. The process from Δ_i to Δ_{i+1} is called *triangle extension*. We continue the triangle extension and stop at Δ_k which satisfies there exists a vertex $b \in \overline{\Delta}_k$ such that $|N(b) \cap \Delta_k| = 2$, the Δ_k is called *characteristic triangle* of H.

Lemma 4.3. Let \triangle_k be the characteristic triangle of H. Then for any i < k, the normal triangle \triangle_i satisfies $D(\triangle_i) = \triangle_i$.

Proof. For any Δ_i (i < k), $|N(v) \cap \Delta_i| \leq 1$ for any vertex $b \in \overline{\Delta}_i$ since Δ_k is a characteristic triangle. Hence Δ_i does not *B*-force *v*. Immediately, we have $D(\Delta_i) = \Delta_i$.

Theorem 4.4. Let \triangle_k consist of *s* trapezia P_{i+1} ($0 \le i \le s-1$) and one triangle P_{s+1} . Then \triangle_k is the characteristic triangle if and only if one of following cases appears:

- (1) there exists l ($0 \le l \le s$) such that P_1 and P_{l+1} have the same corner $h_{k,0}$;
- (2) there exists l ($0 \le l \le s$) such that P_1 and P_{l+1} have the same corner $h_{0,0}$;
- (3) the corner $h_{p-st,k-sq}$ of P_{s+1} coincides with $h_{x,0}$ where $0 \le x \le k$.

Proof. Sufficiency: It suffices to prove there exists $b \in \overline{\Delta}_k$ such that $|N(b) \cap \Delta_k| = 2$. If (1) holds, let $b = b_{k,0} \in \overline{\Delta}_k$. Since $w_{k-1,0} \in P_1$ and $w_{k,0} \in P_{l+1}$, $|N(b_{k,0}) \cap \Delta_k| = 2$. If (2) holds, let $b = b_{0,0} \in \overline{\Delta}_k$. Hence $|N(b_{0,0}) \cap \Delta_k| = 2$ since $w_{p-1,0} \in P_{l+1}, w_{0,0} \in P_1$. If (3) holds, then let $b = b_{x+t+1,q-1} \in \overline{\Delta}_k$ if x < k and $b = b_{x+t,q-1} \in \overline{\Delta}_k$ if x = k. Then the assertion holds since $w_{x,0} \in P_1, w_{x+t,q-1} \in P_{s+1}$ for x < k and $w_{x-1,0} \in P_1, w_{x+t,q-1} \in P_{s+1}$ for x = k.

Necessary: Since Δ_k is the characteristic triangle, there exists $b \in \overline{\Delta}_k$ such that $|N(b) \cap \Delta_k| = 2$. Hence $b \in N(\Delta_k)$. For a vertex $b \in \Delta_k \cap B$, we have

 $N(b) \subset \Delta_k$. So $b \in B \cap \Delta_k$, say $b = b_{i,j}$. Then $N(b_{i,j}) = \{w_{i-1,j}, w_{i,j}, w_{x,y}\}$ where x = i - 1, y = j + 1 if $j \neq q - 1$ and x = i - t - 1, y = 0 if j = q - 1.

Case 1: If $w_{i-1,j} \in P_{l_1}$ and $w_{i,j} \in P_{l_2}$. Then the center $h_{i,j}$ is a point in the intersection of P_{l_1} and P_{l_2} . If $j \neq 0$, then the vertex $b_{i,j-1} \notin \Delta_{k-1}$ satisfies $|N(b_{i,j-1}) \cap \Delta_{k-1}| = 2$ since $w_{i-1,j-1}, w_{i,j-1} \in \Delta_{k-1}$, then $b_{i,j-1} \in D(\Delta_{k-1})$ which contradicts $D(\Delta_{k-1}) = \Delta_{k-1}$ by lemma 4.3, so j = 0. If $\min\{l_1, l_2\} \neq 1$, then the vertex $b_{i+t,q-1} \notin \Delta_{k-1}$ satisfies $|N(b_{i+t,q-1}) \cap \Delta_{k-1}| = 2$ since $w_{i+t,q-1}, w_{i+t-1,q-1} \in \Delta_{k-1}$, then $b_{i+t,q} \in D(\Delta_{k-1})$, a contradiction. Therefore, we have $\min\{l_1, l_2\} = 1$ and j = 0. If $l_1 = 1$, then (1) appears. If $l_2 = 1$, then (2) appears.

Case 2: If $w_{i-1,j} \in P_{l_1}$ and $w_{x,y} \in P_{l_2}$ or $w_{i,j} \in P_{l_1}$ and $w_{x,y} \in P_{l_2}$. If $l_2 \neq 1$ or $y \neq 0$, we have $w_{x,y}b_{i,j} \in E(H[\Delta_k])$ which contradicts $b_{i,j} \in \overline{\Delta}_k$, so $l_2 = 1$ and $y \neq 0$, just j = q - 1. If P_{l_1} is a trapezium, then $b_{i-1,q-1} \in P_{l_1}$. Since $w_{x,0} \in P_1$, then $0 \leq x \leq k$. If x > 0, then $w_{x-1,0}, w_{i-2,q-1} \in \Delta_k$ and further $|N(b_{i-1,q-1}) \cap \Delta_{k-1}| = 2$, then $b_{i-1,q-1} \in D(\Delta_{k-1})$ which contradicts lemma 4.3. So x = 0, then P_{l_1+1} and P_1 have the same corner $h_{0,0}$, (2) appears. If P_{l_1} is a triangle, then $l_1 = s + 1$, further the corner $h_{p-st,k-sq} = h_{x+t+1,q-1}$ of P_{s+1} coincides with $h_{x,0}$ ($0 \leq x \leq k$), (3) appears.

According to the isomorphism ϕ_{tb} and ϕ_{rl} of H, theorem 4.4 and its proof imply the characteristic triangle is, in fact, a maximum triangle on the toroidal polyhex and every maximum triangle is also isomorphic to the characteristic triangle.

Lemma 4.5. Let \triangle_k be the characteristic triangle of H and every II-cycle (resp. I-cycle) of H has g (resp. g') II-columns (resp. I-columns). Then $k \ge \frac{p}{g}$ if one of cases (1)–(3) with $x \ne k$ in theorem 4.4 appears and $k \ge \frac{p}{g'}$ if case (3) with x = k in theorem 4.4 appears.

Proof. Case 1: If P_1 and P_{l+1} $(1 \le l \le s)$ have the same corner $h_{k,0}$. Then $k \equiv p - lt \pmod{p}$. Hence there exists $\lambda \in \mathbb{Z}^+$ such that $k = \lambda p - lt$. Since a *I1*-cycle contains *g I1*-columns, by lemma 2.1 we have $g(q+t) \equiv 0 \pmod{p}$, further $g[p-(q+t)] \equiv 0 \pmod{p}$. So there exists $\mu \in \mathbb{Z}$ such that $g[p-(q+t)] = \mu p$, further $(g - \mu)p = g(q + t)$.

Since $k - sq \ge 1$, $k \ge sq + 1 > lq$. Hence

$$g(k - lq) = g[(\lambda p - lt) - lq] = g[\lambda p - l(q + t)] = g\lambda p - g(q + t)l$$
$$= [g(\lambda - l) + \mu l]p.$$

Then $g(k - lq) \ge p$ since g(k - lq) > 0. Therefore, $k > \frac{p}{q}$.

Case 2: If P_1 and P_{l+1} $(1 \le l \le s)$ have the same corner $h_{0,0}$. Then $k - l(q+t) \equiv 0 \pmod{p}$, further $l(p-q-t) + k \equiv 0 \pmod{p}$. Let $\gamma \in \mathbb{Z}$ satisfy $l(p-q-t)+k = \gamma p$. Then $(l-\gamma)p+k = l(q+t)$, further $g(l-\gamma)p+gk = gl(q+t)$.

Hence $gk = (l - \gamma)gp + lg(q + t)$. By lemma 2.1, $g(q + t) \equiv 0 \pmod{p}$. Therefore, $gk \equiv 0 \pmod{p}$. Clearly, gk > 0. Hence gk > p, just $k > \frac{p}{g}$.

Case 3: If $h_{p-st,k+1-sq} = h_{x,0}$ for $0 \le x \le k$.

Subcase 3.1: If $0 \le x \le k-1$. According to $h_{p-st,k-sq} = h_{x,0}$, we have k-sq-q=0 and p-st-t=x. Further, k = (1+s)q and $0 \le p-(1+s)t < k$ (mod p). Then there exists $\eta \in \mathbb{Z}$ such that $0 \le \eta p - (1+s)t < k$.

By lemma 2.1, $g(q + t) \equiv 0 \pmod{p}$. So there exists $\theta \in \mathbb{Z}$ such that $\theta p = g(q + t)$, then $gq = \theta p - gt$. Hence

$$gk = g(1+s)q = (1+s)(\theta p - gt) = (1+s)\theta p - (1+s)gt$$

and

$$gk > g[\eta p - (1+s)t] = g\eta p - (1+s)gt \ge 0.$$

Therefore $(1+s)\theta > g\eta$, further $(1+s)\theta \ge 1+g\eta$. Then $gk = (1+s)\theta p - (1+s)gt \ge (1+g\eta)p - (1+s)gt = p + [g\eta p - (1+s)gt] \ge p$. So $k \ge \frac{p}{g}$.

Subcase 3.2: If x = k, then $k \equiv p - (s + 1)t \pmod{p}$. Hence there exists $\eta \in \mathbb{Z}^+$ such that $k = \eta p - (s + 1)t$. Then $g'k = \eta g'p - (s + 1)g't$. By lemma 2.1, $g't \equiv 0 \pmod{p}$. There exists $\theta \in \mathbb{Z}$ such that $g'k = [\eta g' - (s + 1)\theta]p$. Since g'k > 0, hence $g'k \ge p$. So $k \ge \frac{p}{g'}$.

Let $G \subset H$, an edge $e \in E(G)$ is called a *pendant edge* if $\beta(e)$ is a 1-degree vertex. Clearly, a pendant edge e is *B*-forced by V(H - G).

Lemma 4.6. Let \triangle_k be the characteristic triangle of toroidal polyhex *H*. Then $D(\triangle_k) = V(H)$.

Proof. Let Δ_k consist of *s* trapeziums P_{l+1} $(0 \le l \le s-1)$ and a triangle P_{s+1} , $H_0 := H[\overline{\Delta}_k]$ is the subgraph of *H* induced by $\overline{\Delta}_k$ (see Figure 4).

Case 1: There exists $0 \le l \le s$ such that P_1 and P_{l+1} have the same corner $h_{k,0}$. Let $S^1 = E(H_0) \cap M_1$. Then we have the following claim:

Figure 4. Illustration for case 1 in proof of lemma 4.6.

468

Claim 1: S^1 is B-forced by Δ_k .

Proof. Clearly, $b_{k,0}w_{k-1,1}$ is a pendant edge of H_0 and is forced by Δ_k . Let $e_1 = b_{k,0}w_{k-1,1}$ and $H_1 = H_0 - \{b_{k,0}, w_{k-1,1}\}$. Define S_i as the vertical pendant edge set of H_i and $H_{i+1} := H_i - V(S_i)$, i = 0, 1, 2, ...

Suppose to the contrary that there exist edges in S^1 not *B*-forced by Δ_k , equivalently, there exists $H_m \subset H_0$ such that $E(H_m)$ contains no pendant vertical edge and $E(H_m) \cap S^1 \neq \emptyset$. Choose one edge $e \in E(H_m) \cap S^1$ such that $e \in II_l$ and *l* is minimal. By the minimality of *l*, for any $e' \in E(II_{l-1})$, either $e' \in E(H[\Delta_k])$ or e' is a pendant edge of some H_i with i < m. Let R_{l-1} and R_l be the *II*-cycle containing II_{l-1} and II_l , respectively. By lemma 4.5, every *II*-cycle contains at least one edge in $E' = \{w_{j,0}b_{j+t+1,q-1}|0 \leq j \leq k-1\}$. Hence, all vertical edges in $E(R_{l-1})$ starting from e' along II^- -direction and stoping at some edge in $E' \cap E(R_{l-1})$ are not in $E(H_m)$. Since *e* is not a pendent edge, therefore all vertical edge in $E(R_l)$ starting from *e* along II^- -direction and stoping at some edge in $E' \cap E(R_l)$ belong to $E(H_m)$; If not, $E(H_m)$ contains vertical pendant edge which contradicts the supposition. But $E' \cap E(H_0) = \emptyset$, which contradicts $H_m \subset H_0$ and $E' \cap E(R_l) \cap E(H_m) \neq \emptyset$. The contradiction implies claim 1.

Since $S^1 = E(H_0) \cap M_1$, then $H - (V(S^1) \cup \Delta_k)$ consists of k isolated vertices: $b_{t+i,q-1}$ $(1 \le i \le k)$. Then $N(b_{t+i,q-1}) \subset \Delta_k \cup V(S^1)$, so $b_{t+i,q-1} \in D(\Delta_k)$ since S^1 is *B*-forced by Δ_k . Further, $D(\Delta_k) = V(H)$.

Case 2: There exists $0 \le l \le s$ such that P_1 and P_{l+1} have the same corner $h_{0,0}$. Let $S^2 = E(H_0) \cap M_2$. Then we have following claim (see Figure 5): *Claim 2:* S^2 *is B-forced by* Δ_k .

Proof. Since $P_l = h_{p-(l-1)t,0}h_{k-(l-1)(q+t),0}h_{k-l(q+t),0}h_{p-lt,0}$, hence $k-l(q+t) \equiv 0$ (mod p) and further $k - (l-1)(q+t) - q \equiv t \pmod{p}$, which implies the black vertex $b_{t+i,q-1}$ $(1 \leq i \leq k)$ is adjacent to $w_{i-1,0}$ belonging to P_1 . Hence, $b_{t+1,q-1}w_{t+1,q-1}$ is a pendant edge of H_0 since $w_{t,q-1} \in P_l \cap N(b_{t+1,q-1})$ and $w_{0,0} \in P_1 \cap N(b_{t+1,q-1})$. Let $H_1 = H_0 - \{b_{t+1,q-1}, w_{t+1,q-1}\}$. Define $S_i \subset S^2$ is the pendant edge set of H_i and $H_{i+1} := H_i - V(S_i), i = 0, 1, ...$

Figure 5. Illustration for case 2 in proof of lemma 4.6.

Figure 6. Illustration for subcase 3.1 in proof of lemma 4.6.

Suppose to the contrary that there exist edges in S^2 not *B*-forced by Δ_k , equivalently, there exists $H_m \subset H_0$ such that every edge in $E(H_m) \cap S^2 \neq \emptyset$ is not a pendant edge of H_m . Choose one edge $e \in E(H_m) \cap S^2$ such that $e \in II_l$ and *l* is minimal. By the minimality of *l*, for any $e' \in E(II_{l-1}) \cap M_2$, either $e' \in E(H[\Delta_k])$ or e' is a pendant edge of some H_i with i < m. By lemma 4.5, every *II*-cycle contains at least one edge in $E' = \{w_{j,0}b_{j,0}|0 \leq j \leq k-1\}$. Hence, all edges in $E(R_{l-1}) \cap M_2$ starting from e' along II^+ -direction and stoping at some edge in $E' \cap E(R_{l-1})$ are not in $E(H_m)$. Since *e* is not a pendent edge, all vertical edge in $E(R_l)$ starting from *e* along II^+ -direction and stoping at some edge in $E' \cap E(R_l)$ belong to $E(H_m)$; If not, $E(H_m)$ contains pendant edge in S^2 which contradicts the supposition. But $E' \cap E(H_0) = \emptyset$, which contradicts $H_m \subset H_0$ and $E' \cap E(R_l) \cap E(H_m) \neq \emptyset$. The contradiction implies claim 2.

Since S^2 is *B*-forced by Δ_k , $H_0 - V(S^2)$ has no edges, hence for any vertex in $H_0 - V(S^2)$, its neighbors belongs to $\Delta_k \cup V(S^2)$. Hence $D(\Delta_k) = V(H)$.

Case 3: The corner $h_{p-st,k-sq}$ of P_{s+1} coincides with $h_{x,0}$ where $0 \le x \le k$. Subcase 3.1: If x < k. Then $b_{x+1,q-1}w_{x+1,q-1}$ is a pendant edge of H_0 . Let $H_1 = H_0 - \{b_{x+1,q-1}, w_{x+1,q-1}\}$ (see Figure 6).

Further, by the same discussion as that of case 2, we have $E(H_0) \cap M_2$ is *B*-forced by Δ_k . Since $H_0 - V(E(H_0) \cap M_2)$ has only k isolated vertices, $D(\Delta_k) = V(H)$.

Subcase 3.2: If x = k. Then $b_{x,q-1}w_{x-1,q-1}$ is a pendant edge of H_0 . Let $H_1 = H_0 - \{b_{x,q-1}, w_{x-1,q-1}\}$.

By the same discussion of subcase 3.1 but changing *II*-cycle to *I*-cycle, we have $D(\Delta_k) = V(H)$.

Lemma 4.7. Let \triangle_k be the characteristic triangle of *H*. Then $f(H) \leq k$.

Proof. It suffices to find a perfect matching M of H such that $f(H, M) \leq k$. Let Δ_k consist of s trapeziums P_{l+1} ($0 \leq l \leq s-1$) and a triangle P_{s+1} .

Figure 7. T_1 and T_2 , the double edges are *B*-forced by $T_1 \cup T_2$.

Case 1: If there exists $0 \le l \le s$ such that P_1 and P_{l+1} have the same corner $h_{k,0}$. Let $S = \{w_{i,0}b_{i+t+1,q-1} | 0 \le i \le k-1\}$. Then S forces $E(H[\Delta_k]) \cap M_1$. By lemma 4.6, in this case, Δ_k forces $E(H[\bar{\Delta}_k]) \cap M_1$. Since $M_1 = S \cup (E(H[\Delta_k]) \cap M_1) \cup (E(H[\bar{\Delta}_k]) \cap M_1)$, we have S forces M_1 . Further, $f(H(p,q,t), M_1) \le |S| = k$.

Case 2: If there exists $0 \le l \le s$ such that P_1 and P_{l+1} have the same corner $h_{0,0}$. Let $S = \{b_{p-rt,i}w_{p-rt,i} | 0 \le r \le \lfloor \frac{k}{q} \rfloor, 0 \le i \le q-1$ and $r = \lceil \frac{k}{q} \rceil, 0 \le i \le k-(r-1)q-1\}$. Then *S* forces $E(H[\Delta_k]) \cap M_2$. Since Δ_k forces $E(H[\bar{\Delta}_k]) \cap M_2$ and $M_2 = S \cup (E(H[\Delta_k]) \cap M_2) \cup (E(H[\bar{\Delta}_k]) \cap M_2))$, we have *S* forces M_2 and then $f(H(p,q,t), M_2) \le |S| = k$.

Case 3: The corner $h_{p-st,k-sq}$ of P_{s+1} coincides with $h_{x,0}$ where $0 \le x \le k$. *Subcase 3.1:* For $0 \le x < k$. Let $S = \{b_{p-rt,i}w_{p-rt,i}| \ 0 \le r \le \lfloor \frac{k}{q} \rfloor, 0 \le i \le q-1 \text{ and } r = \lceil \frac{k}{q} \rceil, 0 \le i \le k - (r-1)q - 1\}$. As discussion in case 2, we have S forces M_2 and then $f(H, M_2) \le |S| = k$. *Subcase 3.2:* For x = k. Let $S = \{b_{k-r(p+t),i}w_{k-r(p+t)-1,i}| \ 0 \le r \le \lfloor \frac{k}{q} \rfloor, 0 \le k\}$

Subcase 3.2: For x = k. Let $S = \{b_{k-r(p+t),i}w_{k-r(p+t)-1,i} | 0 \le r \le \lfloor \frac{k}{q} \rfloor, 0 \le i \le q-1 \text{ and } r = \lceil \frac{k}{q} \rceil, 0 \le i \le k-(r-1)q-1 \}$. Then S forces $E(H[\Delta_k]) \cap M_3$. Since Δ_k forces $E(H[\bar{\Delta}_k]) \cap M_3$ and $M_3 = S \cup (E(H[\Delta_k]) \cap M_3) \cup (E(H[\bar{\Delta}_k]) \cap M_3))$, we have S forces M_3 and further $f(H, M_3) \le |S| = k$.

Let triangles T_1 and T_2 satisfy $T_1 = N[b_{x_1,y_1}]$ and $T_2 = N[b_{x_2,y_2}]$. If T_1 and T_2 have a common point, then $D(T_1 \cup T_2)$ is the minimal triangle T such that $T_1 \cup T_2 \subset T$ if Δ_k satisfies $k > \delta(T)$ (see figure 7). For generality, let T_1 and T_2 be two triangles with $\delta(T_i) < k(i = 1, 2)$. We say T_1 and T_2 are *disjoint* if they have no common point. If T_1 and T_2 have a common point, let T_* be the region of intersection of T_1 and T_2 , then $D(T_1 \cup T_2)$ is the minimal triangle containing $T_1 \cup T_2$ if $\delta(T_1) + \delta(T_2) - \delta(T_*) < k$ and $D(T_1 \cup T_2) = V(H)$ if $\delta(T_1) + \delta(T_2) - \delta(T_*) > k$, where k is the side length of the characteristic triangle of H. We omit the proof here.

Lemma 4.8. Let \triangle_k be the characteristic triangle of H and $b_{pq} > b_{pq-1} > \cdots > b_1$ be any canonical ordering of B whose key vertices are $b_{j_1} > \cdots > b_{j_l}$. Then $\sum_{i=1}^{l} \epsilon(b_{j_i}) \ge k$.

Proof. Since *H* is a 3-regular graph and b_{j_i} $(1 \le i \le l)$ is key vertex, we have $1 \le \epsilon(b_{j_i}) \le 2$. Clearly we have $b_{pq} = b_{j_1}$, $\epsilon(b_{j_1}) = 2$ and $D(b_{j_1}) = V(H)$. If l = 1, then $D(N[b_{j_1}]) = V(H)$. According to the isomorphism ϕ_{lb} and ϕ_{rl} , let $b_{j_1} = b_{1,0}$. Then $\Delta_2 = N[b_{j_1}]$, so $D(\Delta_2) = V(H)$, hence Δ_2 is a characteristic triangle. Therefore, $k = 2 \le \epsilon(b_{j_1})$ and the assertion holds.

So, in the following, we suppose l > 1. Then $D(b_{j_{l-1}}) \subsetneq V(H)$.

Claim: $D(b_{j_i})$ $(1 \le i \le l-1)$ consists of some disjoint triangles T such that $\delta(T) < k$ and $\sum_{b_{j_i} \in T} \epsilon(b_{j_i}) \ge \delta(T)$ for $1 \le t \le i$.

Proof. We prove it by induction on *i*. If i = 1, let $b_{j_1} = b_{x,y}$. Then $D(b_{j_1}) = N[b_{x,y}]$. So $D(b_{j_1})$ consists only of one triangle $T = N[b_{x,y}]$ with side length 2. On the other hand, b_{j_1} is the maximum key vertex of the ordering *B*, so $\epsilon(b_{j_1}) = 2 \ge \delta(T)$. Hence the claim holds for i = 1.

In the following, we assume claim is true for i-1, then $D(b_{j_{i-1}})$ consists of some disjoint triangles T_1, \ldots, T_r and $\sum_{b_{j_i} \in T_m} \epsilon(b_{j_i}) \ge \delta(T_m)$ $(1 \le t \le i-1, 1 \le m \le r)$. Let $\mathcal{T} = \{T_1, T_2, \ldots, T_r\}$. For the key vertex b_{j_i} , let T^0 be the triangle such that $T^0 = N[b_{j_i}]$. If T^0 has no common points with T_m $(1 \le m \le r)$, then $\epsilon(b_{j_i}) = 2$ and claim is true since $\delta(T) = 2$. Without loss of generality, suppose there exists a sequence of triangles $T_{m_1}, \ldots, T_{m_{r_1}} \in \mathcal{T}$ such that $T_{m_{j+1}}$ has a common point with T^j , where T^j is the minimal triangle satisfying $T^{j-1} \cup T_{m_j} \subseteq T^j$, and for every $T' \in \mathcal{T}, T'$ has a common point with T^{r_1} if and only if $T' \subseteq T^{r_1}$. Let $T_*^j = T^{j-1} \cap T_{m_j} (1 \le j \le r_1)$. Then $\delta(T^j) = \delta(T_{m_j}) + \delta(T^{j-1}) - \delta(T_*^j)$ and $\delta(T^{r_1}) < k$, otherwise contradict with $i \le l-1$. Let $\mathcal{T}_m = \{T_{m_1}, T_{m_2}, \ldots, T_{m_{r_1}}\}$.

$$\delta(T^{r_1}) = \delta(T^{r_1-1}) + \delta(T_{m_{r_1}}) - \delta(T^{r_1}_*) \leqslant \delta(T^{r_1-1}) + \delta(T_{m_{r_1}}) \leqslant \sum_{j=1}^{r_1} \delta(T_{m_j}) + \delta(T^0) - \delta(T^1_*)$$
$$\leqslant \sum_{j=1}^{r_1} \sum_{b_{j_l} \in T_{m_j}} \epsilon(b_{j_l}) + \epsilon(b_{j_l}) + \sum_{T' \in \mathcal{T} \setminus \mathcal{T}_m \text{ and } T' \subset T^{r_1}} \delta(T') \leqslant \sum_{b_{j_l} \in T^{r_1}} \epsilon(b_{j_l}).$$

Therefore, the claim holds.

In the following, we will prove $\sum_{i=1}^{l} \epsilon(b_{j_i}) \ge k$. Suppose that $D(b_{j_{l-1}})$ consists of r disjoint triangles T_1, \ldots, T_r . Let $T^0 = N[b_{j_l}]$. Since $1 \le \epsilon(b_{j_l}) \le 2$ and $D(b_{j_l}) = V(H)$, there exists $T_{m_1}(1 \le m_1 \le r)$ such that T_{m_1} has a common point with T^0 . Then either $\delta(T_{m_1}) + \delta(T^0) - \delta(T_*^1) \ge k$ where $T_*^1 = T^0 \cap T_{m_1}$ or there is a minimal triangle T^1 such that $T^0 \cup T_{m_1} \subset T^1$ and $\delta(T^1) = \delta(T_{m_1}) + \delta(T^0) - \delta(T_*^1) < k$.

If the former holds, we have

$$k \leq \delta(T_{m_1}) + \delta(T^0) - \delta(T^1_*) \leq \sum_{b_{j_i} \in T_{m_1}} \epsilon(b_{j_i}) + \epsilon(b_{j_l}) \leq \sum_{i=1}^l \epsilon(b_{j_i}),$$

the assertion holds. If the latter holds, without loss of generality, suppose there exists a sequence of triangles $T_{m_1}, T_{m_2}, \ldots, T_{m_{r_1}} (1 \le m_i \le r \text{ for } i = 1, 2, \ldots, r_1)$ and triangles $T^0, T^1, T^2, \ldots, T^{r_1}$, such that T^j has a common point with $T_{m_{j+1}}$ and is minimal subject to $T^{j-1} \cup T_{m_j} \subseteq T^j$, and every $T_i(1 \le i \le r)$ has a common point with T^{r_1} if and only if $T_i \subseteq T^{r_1}$. Let $T_*^j = T^{j-1} \cap T_{m_j}$. Then $\delta(T^{r_1}) = \delta(T^{r_1-1}) + \delta(T_{m_{r_1}}) - \delta(T_*^{r_1}) \ge k$ by $D(b_{j_i}) = V(H)$. According to the claim, we have

$$k \leq \delta(T^{r_1-1}) + \delta(T_{m_{r_1}}) - \delta(T_*^{r_1}) \leq \delta(T^{r_1-1}) + \delta(T_{m_{r_1}})$$

$$\leq \sum_{j=1}^{r_1} \delta(T_{m_j}) + \delta(T^0) - \delta(T_*^1) \leq \sum_{j=1}^{r_1} \sum_{b_{j_i} \in T_{m_j}} \epsilon(b_{j_i}) + \epsilon(b_{j_l}) \leq \sum_{i=1}^l \epsilon(b_{j_i}).$$

The assertion holds.

Theorem 4.9. Let Δ_k be the characteristic triangle of H(p, q, t). Then f(H(p, q, t)) = k.

Proof. By lemmas 3.9 and 4.8, we know the smallest possible maximum excess over all canonical orderings of *B* is no less than *k*. Hence $f(H(p,q,t)) \ge k$ by lemma 3.6 and theorem 3.8. By lemma 4.7, $f(H(p,q,t)) \le k$. So f(H(p,q,t)) = k.

5. An algorithm

We conclude this paper with a fast algorithm to compute f(H(p, q, t)) with $p > q \ge 1$ and $1 \le t \le p - q - 1$, based on theorem 4.2, which gives the forcing number of a toroidal polyhex H(p, q, t) with $1 \le p \le q$ or $p > q \ge 1$ and $t \in \{p - q, p - q + 1, \dots, p - 1, 0\}$.

According to the triangle extension introduced in section 4 and theorems 4.4 and 4.9, we have the following algorithm of complexity O(n), where n is the number of vertices of H(p, q, t).

Algorithm 5.1. Input: A toroidal polyhex H(p, q, t) with $p > q \ge 1$ and $1 \le t \le p - q - 1$.

Output: The forcing number of H(p, q, t).

Step 0. Set a := p-1, b := 1, and k := q+1 (a is the minimal x-coordinate over all bottom-left vertices of trapeziums except P_1 , b is the maximal x-coordinate over all the bottom-right vertices of the trapeziums except P_1 , and k is the side length of the normal triangle).

Step 1. Set $s := \lfloor \frac{k}{q} \rfloor$ and r := k - sq; If r = 0, set s := s - 1, r := q. **Step 2.** If r = q and $0 \le p - (s+1)t \pmod{p} \le k$, obtain the characteristic triangle and output k, stop.

Step 3. If r = 1, set $a := \min\{a, p - st \pmod{p}\}, b := \max\{b + 1, (p - st)\}$ (mod p) + 1; else, set b := b + 1.

Step 4. If a = k or b = q, obtain the characteristic triangle and output k, then stop.

Step 5. Set k := k + 1. Then go to step 1.

 \square

A program of algorithm 5.1 in Microsoft Visual FoxPro 6.0 has been accomplished on micro computer.

Acknowledgments

This work was supported by NSFC grant 10471058, TRAPOYT, and the Priority Academic Discipline Foundation of Linyi Normal University.

References

- [1] P. Adams, M. Mahdian and E.S. Mahmoodian, Discrete Math. 281 (2004) 1–12.
- [2] P. Afshani, H. Hatami and E.S. Mahmoodian, Aust. J. Comb. 30 (2004) 147-160.
- [3] T. Došlić, J. Math. Chem. (2006). Online First, DOI: 10.1007/s10910-006-9056-2.
- [4] F. Harary, D.J. Klein and T.P. Živković, J. Math. Chem. 6 (1991) 295–306.
- [5] D.J. Klein and M. Randić, J. Comput. Chem. 8 (1987) 516-521.
- [6] D.J. Klein and H. Zhu, Discrete Appl. Math. 67 (1996) 157-173.
- [7] S. Kleinerman, Discrete Math. 306 (2006) 66-73.
- [8] E.C. Kirby, D.J. Klein, R.B. Mallion, P. Pollak and H. Sachs, Croat. Chem. Acta 77(1-2) (2004) 263–278.
- [9] E.C. Kirby, R.B. Mallion and P. Pollak, J. Chem. Soc. Faraday Trans. 89(12) (1993) 1945–1953.
- [10] E.C. Kirby and P. Pollak, J. Chem. Inf. Comput. Sci. 38 (1998) 66-70.
- [11] K. Kutnar, A. Malnič and D. Marušič, J. Chem. Inf. Comput. Sci. 45 (2005) 1527–1535.
- [12] F. Lam and L. Pachter, Theor. Comput. Sci. 303 (2003) 409-416.
- [13] J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans and C. Dekker, Nature 385 (1997) 780–781.
- [14] L. Pechter and P. Kim, Discrete Math. 190 (1998) 287-294.
- [15] M. Randić and D.J. Klein, in: Mathematical and Computational Concepts in Chemsitry, ed. N. Trinajstić (Wiley, New York, 1985) pp. 274-282.
- [16] M.E. Riddle, Discrete Math. 245 (2002) 283–292.
- [17] W.C. Shiu, P.C.B. Lam and H. Zhang, J. Math. Chem. 38(4) (2005) 451-466.
- [18] D. Vukičević, H.W. Kroto and M. Randić, Croat. Chem. Acta 78 (2005) 223–234.
- [19] D. Vukičević and J. Sedlar, Math. Commun. 9 (2004) 169-179.
- [20] D. Vukičević and N. Trinajstić, J. Math. Chem. (2006) Online-first, DOI: 10.1007/s10910-006-9133-6.

- [21] F. Zhang and X. Li, Discrete Math. 140 (1995) 253-263.
- [22] F. Zhang and X. Li, Acta Math. Appl. Sinica (English Series) 12(2) (1996) 209-215.
- [23] F. Zhang and H. Zhang, J. Mol. Struct. (Theochem) 331 (1995) 255-260.
- [24] H. Zhang and F. Zhang, Discrete Appl. Math. 105 (2000) 291-311.